Prompt Sentiment: The Catalyst for LLM Change
- URL: http://arxiv.org/abs/2503.13510v1
- Date: Fri, 14 Mar 2025 06:25:21 GMT
- Title: Prompt Sentiment: The Catalyst for LLM Change
- Authors: Vishal Gandhi, Sagar Gandhi,
- Abstract summary: This study systematically examines how sentiment variations in prompts affect large language models (LLMs)<n>Our analysis spans six AI-driven applications, including content generation, conversational AI, legal and financial analysis, healthcare AI, creative writing, and technical documentation.<n>Our findings reveal that prompt sentiment significantly influences model responses, with negative prompts often reducing factual accuracy and amplifying bias, while positive prompts tend to increase verbosity and sentiment propagation.
- Score: 0.29998889086656577
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of large language models (LLMs) has revolutionized natural language processing (NLP), yet the influence of prompt sentiment, a latent affective characteristic of input text, remains underexplored. This study systematically examines how sentiment variations in prompts affect LLM-generated outputs in terms of coherence, factuality, and bias. Leveraging both lexicon-based and transformer-based sentiment analysis methods, we categorize prompts and evaluate responses from five leading LLMs: Claude, DeepSeek, GPT-4, Gemini, and LLaMA. Our analysis spans six AI-driven applications, including content generation, conversational AI, legal and financial analysis, healthcare AI, creative writing, and technical documentation. By transforming prompts, we assess their impact on output quality. Our findings reveal that prompt sentiment significantly influences model responses, with negative prompts often reducing factual accuracy and amplifying bias, while positive prompts tend to increase verbosity and sentiment propagation. These results highlight the importance of sentiment-aware prompt engineering for ensuring fair and reliable AI-generated content.
Related papers
- Persuasion with Large Language Models: a Survey [49.86930318312291]
Large Language Models (LLMs) have created new disruptive possibilities for persuasive communication.
In areas such as politics, marketing, public health, e-commerce, and charitable giving, such LLM Systems have already achieved human-level or even super-human persuasiveness.
Our survey suggests that the current and future potential of LLM-based persuasion poses profound ethical and societal risks.
arXiv Detail & Related papers (2024-11-11T10:05:52Z) - ProSA: Assessing and Understanding the Prompt Sensitivity of LLMs [72.13489820420726]
ProSA is a framework designed to evaluate and comprehend prompt sensitivity in large language models.
Our study uncovers that prompt sensitivity fluctuates across datasets and models, with larger models exhibiting enhanced robustness.
arXiv Detail & Related papers (2024-10-16T09:38:13Z) - Revise, Reason, and Recognize: LLM-Based Emotion Recognition via Emotion-Specific Prompts and ASR Error Correction [31.677026213735363]
We propose novel prompts that incorporate emotion-specific knowledge from acoustics, linguistics, and psychology.
Experiments on context-aware learning, in-context learning, and instruction tuning are performed to examine the usefulness of LLM training schemes.
Our study aims to refine the use of LLMs in emotion recognition and related domains.
arXiv Detail & Related papers (2024-09-23T21:07:06Z) - Do Large Language Models Possess Sensitive to Sentiment? [18.88126980975737]
Large Language Models (LLMs) have recently displayed their extraordinary capabilities in language understanding.<n>This paper investigates the ability of LLMs to detect and react to sentiment in text modal.
arXiv Detail & Related papers (2024-09-04T01:40:20Z) - Semantic Change Characterization with LLMs using Rhetorics [0.1474723404975345]
We investigate the potential of LLMs in characterizing three types of semantic change: thought, relation, and orientation.
Our results highlight the effectiveness of LLMs in capturing and analyzing semantic changes, providing valuable insights to improve computational linguistic applications.
arXiv Detail & Related papers (2024-07-23T16:32:49Z) - Can LLMs Understand the Implication of Emphasized Sentences in Dialogue? [64.72966061510375]
Emphasis is a crucial component in human communication, which indicates the speaker's intention and implication beyond pure text in dialogue.
This paper introduces Emphasized-Talk, a benchmark with emphasis-annotated dialogue samples capturing the implications of emphasis.
We evaluate various Large Language Models (LLMs), both open-source and commercial, to measure their performance in understanding emphasis.
arXiv Detail & Related papers (2024-06-16T20:41:44Z) - How are Prompts Different in Terms of Sensitivity? [50.67313477651395]
We present a comprehensive prompt analysis based on the sensitivity of a function.
We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output.
We introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding.
arXiv Detail & Related papers (2023-11-13T10:52:01Z) - AI Text-to-Behavior: A Study In Steerability [0.0]
The research explores the steerability of Large Language Models (LLMs)
We quantitatively gauged the model's responsiveness to tailored prompts using a behavioral psychology framework called OCEAN.
Our findings underscore GPT's versatility and ability to discern and adapt to nuanced instructions.
arXiv Detail & Related papers (2023-08-07T18:14:24Z) - Large Language Models Understand and Can be Enhanced by Emotional
Stimuli [53.53886609012119]
We take the first step towards exploring the ability of Large Language Models to understand emotional stimuli.
Our experiments show that LLMs have a grasp of emotional intelligence, and their performance can be improved with emotional prompts.
Our human study results demonstrate that EmotionPrompt significantly boosts the performance of generative tasks.
arXiv Detail & Related papers (2023-07-14T00:57:12Z) - PromptRobust: Towards Evaluating the Robustness of Large Language Models on Adversarial Prompts [76.18347405302728]
This study uses a plethora of adversarial textual attacks targeting prompts across multiple levels: character, word, sentence, and semantic.
The adversarial prompts are then employed in diverse tasks including sentiment analysis, natural language inference, reading comprehension, machine translation, and math problem-solving.
Our findings demonstrate that contemporary Large Language Models are not robust to adversarial prompts.
arXiv Detail & Related papers (2023-06-07T15:37:00Z) - REDAffectiveLM: Leveraging Affect Enriched Embedding and
Transformer-based Neural Language Model for Readers' Emotion Detection [3.6678641723285446]
We propose a novel approach for Readers' Emotion Detection from short-text documents using a deep learning model called REDAffectiveLM.
We leverage context-specific and affect enriched representations by using a transformer-based pre-trained language model in tandem with affect enriched Bi-LSTM+Attention.
arXiv Detail & Related papers (2023-01-21T19:28:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.