WMINet: A Wheel-Mounted Inertial Learning Approach For Mobile-Robot Positioning
- URL: http://arxiv.org/abs/2503.13568v1
- Date: Mon, 17 Mar 2025 10:43:46 GMT
- Title: WMINet: A Wheel-Mounted Inertial Learning Approach For Mobile-Robot Positioning
- Authors: Gal Versano, Itzik Klein,
- Abstract summary: We propose WMINet a wheel-mounted inertial deep learning approach to estimate the mobile robot's position based only on its inertial sensors.<n>To that end, we merge two common practical methods to reduce inertial drift: a wheel-mounted approach and driving the mobile robot in periodic trajectories.<n>Our approach demonstrated a 66% improvement over state-of-the-art approaches.
- Score: 2.915868985330569
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous mobile robots are widely used for navigation, transportation, and inspection tasks indoors and outdoors. In practical situations of limited satellite signals or poor lighting conditions, navigation depends only on inertial sensors. In such cases, the navigation solution rapidly drifts due to inertial measurement errors. In this work, we propose WMINet a wheel-mounted inertial deep learning approach to estimate the mobile robot's position based only on its inertial sensors. To that end, we merge two common practical methods to reduce inertial drift: a wheel-mounted approach and driving the mobile robot in periodic trajectories. Additionally, we enforce a wheelbase constraint to further improve positioning performance. To evaluate our proposed approach we recorded using the Rosbot-XL a wheel-mounted initial dataset totaling 190 minutes, which is made publicly available. Our approach demonstrated a 66\% improvement over state-of-the-art approaches. As a consequence, our approach enables navigation in challenging environments and bridges the pure inertial gap. This enables seamless robot navigation using only inertial sensors for short periods.
Related papers
- Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
Navigating urban environments poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation.
This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city.
Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller.
Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain.
arXiv Detail & Related papers (2024-05-03T00:29:20Z) - Principles and Guidelines for Evaluating Social Robot Navigation
Algorithms [44.51586279645062]
Social robot navigation is difficult to evaluate because it involves dynamic human agents and their perceptions of the appropriateness of robot behavior.
Our contributions include (a) a definition of a socially navigating robot as one that respects the principles of safety, comfort, legibility, politeness, social competency, agent understanding, proactivity, and responsiveness to context, (b) guidelines for the use of metrics, development of scenarios, benchmarks, datasets, and simulators to evaluate social navigation, and (c) a social navigation metrics framework to make it easier to compare results from different simulators, robots and datasets.
arXiv Detail & Related papers (2023-06-29T07:31:43Z) - Confidence-Controlled Exploration: Efficient Sparse-Reward Policy Learning for Robot Navigation [72.24964965882783]
Reinforcement learning (RL) is a promising approach for robotic navigation, allowing robots to learn through trial and error.<n>Real-world robotic tasks often suffer from sparse rewards, leading to inefficient exploration and suboptimal policies.<n>We introduce Confidence-Controlled Exploration (CCE), a novel method that improves sample efficiency in RL-based robotic navigation without modifying the reward function.
arXiv Detail & Related papers (2023-06-09T18:45:15Z) - Deep Learning for Inertial Positioning: A Survey [4.188058836787458]
Inertial sensor-based positioning is essential in various applications, including personal navigation, location-based security, and human-device interaction.
Deep learning techniques have been developed, sparking significant research into addressing the problem of inertial positioning.
This article aims to attract readers from various backgrounds, including researchers and practitioners interested in the potential of deep learning-based techniques to solve inertial positioning problems.
arXiv Detail & Related papers (2023-03-07T09:33:49Z) - How Does It Feel? Self-Supervised Costmap Learning for Off-Road Vehicle
Traversability [7.305104984234086]
Estimating terrain traversability in off-road environments requires reasoning about complex interaction dynamics between the robot and these terrains.
We propose a method that learns to predict traversability costmaps by combining exteroceptive environmental information with proprioceptive terrain interaction feedback.
arXiv Detail & Related papers (2022-09-22T05:18:35Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Autonomous Aerial Robot for High-Speed Search and Intercept Applications [86.72321289033562]
A fully-autonomous aerial robot for high-speed object grasping has been proposed.
As an additional sub-task, our system is able to autonomously pierce balloons located in poles close to the surface.
Our approach has been validated in a challenging international competition and has shown outstanding results.
arXiv Detail & Related papers (2021-12-10T11:49:51Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot.
We show superior performance compared to wheeled robot (LoCoBot) baselines.
We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute.
arXiv Detail & Related papers (2021-12-03T18:59:59Z) - Learning High-Speed Flight in the Wild [101.33104268902208]
We propose an end-to-end approach that can autonomously fly quadrotors through complex natural and man-made environments at high speeds.
The key principle is to directly map noisy sensory observations to collision-free trajectories in a receding-horizon fashion.
By simulating realistic sensor noise, our approach achieves zero-shot transfer from simulation to challenging real-world environments.
arXiv Detail & Related papers (2021-10-11T09:43:11Z) - Robot Localization and Navigation through Predictive Processing using
LiDAR [0.0]
We show a proof-of-concept of the predictive processing-inspired approach to perception applied for localization and navigation using laser sensors.
We learn the generative model of the laser through self-supervised learning and perform both online state-estimation and navigation.
Results showed improved state-estimation performance when comparing to a state-of-the-art particle filter in the absence of odometry.
arXiv Detail & Related papers (2021-09-09T09:58:00Z) - XAI-N: Sensor-based Robot Navigation using Expert Policies and Decision
Trees [55.9643422180256]
We present a novel sensor-based learning navigation algorithm to compute a collision-free trajectory for a robot in dense and dynamic environments.
Our approach uses deep reinforcement learning-based expert policy that is trained using a sim2real paradigm.
We highlight the benefits of our algorithm in simulated environments and navigating a Clearpath Jackal robot among moving pedestrians.
arXiv Detail & Related papers (2021-04-22T01:33:10Z) - Rule-Based Reinforcement Learning for Efficient Robot Navigation with
Space Reduction [8.279526727422288]
In this paper, we focus on efficient navigation with the reinforcement learning (RL) technique.
We employ a reduction rule to shrink the trajectory, which in turn effectively reduces the redundant exploration space.
Experiments conducted on real robot navigation problems in hex-grid environments demonstrate that RuRL can achieve improved navigation performance.
arXiv Detail & Related papers (2021-04-15T07:40:27Z) - Autonomous Off-road Navigation over Extreme Terrains with
Perceptually-challenging Conditions [7.514178230130502]
We propose a framework for resilient autonomous computation in perceptually challenging environments with mobility-stressing elements.
We propose a fast settling algorithm to generate robust multi-fidelity traversability estimates in real-time.
The proposed approach was deployed on multiple physical systems including skid-steer and tracked robots, a high-speed RC car and legged robots.
arXiv Detail & Related papers (2021-01-26T22:13:01Z) - High-Speed Robot Navigation using Predicted Occupancy Maps [0.0]
We study algorithmic approaches that allow the robot to predict spaces extending beyond the sensor horizon for robust planning at high speeds.
We accomplish this using a generative neural network trained from real-world data without requiring human annotated labels.
We extend our existing control algorithms to support leveraging the predicted spaces to improve collision-free planning and navigation at high speeds.
arXiv Detail & Related papers (2020-12-22T16:25:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.