Does the Appearance of Autonomous Conversational Robots Affect User Spoken Behaviors in Real-World Conference Interactions?
- URL: http://arxiv.org/abs/2503.13625v1
- Date: Mon, 17 Mar 2025 18:20:30 GMT
- Title: Does the Appearance of Autonomous Conversational Robots Affect User Spoken Behaviors in Real-World Conference Interactions?
- Authors: Zi Haur Pang, Yahui Fu, Divesh Lala, Mikey Elmers, Koji Inoue, Tatsuya Kawahara,
- Abstract summary: We compare a human-like android, ERICA, with a less anthropomorphic humanoid, TELECO.<n>The results show that participants produced fewer disfluencies and employed more complex syntax when interacting with ERICA.<n>We conclude that designing robots to elicit more structured and fluent user speech can enhance their communicative alignment with humans.
- Score: 19.873188667424024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the impact of robot appearance on users' spoken behavior during real-world interactions by comparing a human-like android, ERICA, with a less anthropomorphic humanoid, TELECO. Analyzing data from 42 participants at SIGDIAL 2024, we extracted linguistic features such as disfluencies and syntactic complexity from conversation transcripts. The results showed moderate effect sizes, suggesting that participants produced fewer disfluencies and employed more complex syntax when interacting with ERICA. Further analysis involving training classification models like Na\"ive Bayes, which achieved an F1-score of 71.60\%, and conducting feature importance analysis, highlighted the significant role of disfluencies and syntactic complexity in interactions with robots of varying human-like appearances. Discussing these findings within the frameworks of cognitive load and Communication Accommodation Theory, we conclude that designing robots to elicit more structured and fluent user speech can enhance their communicative alignment with humans.
Related papers
- Analysis and Detection of Differences in Spoken User Behaviors between Autonomous and Wizard-of-Oz Systems [21.938414385824903]
We analyzed user spoken behaviors in both attentive listening and job interview dialogue scenarios.
Results revealed significant differences in metrics such as speech length, speaking rate, fillers, backchannels, disfluencies, and laughter.
We developed predictive models to distinguish between operator and autonomous system conditions.
arXiv Detail & Related papers (2024-10-04T05:07:55Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
We propose a general pre-training pipeline that learns Manipulation by Predicting the Interaction.
The experimental results demonstrate that MPI exhibits remarkable improvement by 10% to 64% compared with previous state-of-the-art in real-world robot platforms.
arXiv Detail & Related papers (2024-06-01T13:28:31Z) - A Multi-Modal Explainability Approach for Human-Aware Robots in Multi-Party Conversation [38.227022474450834]
We present an addressee estimation model with improved performance in comparison with the previous state-of-the-art.<n>We also propose several ways to incorporate explainability and transparency in the aforementioned architecture.
arXiv Detail & Related papers (2024-05-20T13:09:32Z) - Comparing Apples to Oranges: LLM-powered Multimodal Intention Prediction in an Object Categorization Task [17.190635800969456]
In this paper, we examine using Large Language Models to infer human intention in a collaborative object categorization task with a physical robot.
We propose a novel multimodal approach that integrates user non-verbal cues, like hand gestures, body poses, and facial expressions, with environment states and user verbal cues to predict user intentions.
arXiv Detail & Related papers (2024-04-12T12:15:14Z) - Inter-X: Towards Versatile Human-Human Interaction Analysis [100.254438708001]
We propose Inter-X, a dataset with accurate body movements and diverse interaction patterns.
The dataset includes 11K interaction sequences and more than 8.1M frames.
We also equip Inter-X with versatile annotations of more than 34K fine-grained human part-level textual descriptions.
arXiv Detail & Related papers (2023-12-26T13:36:05Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCue is a novel approach for improving visual feature extraction in HOI detection.
We develop a transformer-based feature extraction module with a multi-tower architecture that integrates contextual cues into both instance and interaction detectors.
arXiv Detail & Related papers (2023-11-26T09:11:32Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
Addressee Estimation is a skill essential for social robots to interact smoothly with humans.
Inspired by human perceptual skills, a deep-learning model for Addressee Estimation is designed, trained, and deployed on an iCub robot.
The study presents the procedure of such implementation and the performance of the model deployed in real-time human-robot interaction.
arXiv Detail & Related papers (2023-11-09T13:01:21Z) - A Graph-to-Text Approach to Knowledge-Grounded Response Generation in Human-Robot Interaction [2.098944952054856]
This paper presents a novel conversational model for human--robot interaction that rests upon a graph-based representation of the dialogue state.
The neural conversational model employed to respond to user utterances relies on a simple but effective graph-to-text mechanism.
The proposed approach is empirically evaluated through a user study with a humanoid robot.
arXiv Detail & Related papers (2023-11-03T15:44:28Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Let's be friends! A rapport-building 3D embodied conversational agent
for the Human Support Robot [0.0]
Partial subtle mirroring of nonverbal behaviors during conversations (also known as mimicking or parallel empathy) is essential for rapport building.
Our research question is whether integrating an ECA able to mirror its interlocutor's facial expressions and head movements with a human-service robot will improve the user's experience.
Our contribution is the complex integration of an expressive ECA, able to track its interlocutor's face, and to mirror his/her facial expressions and head movements in real time, integrated with a human support robot.
arXiv Detail & Related papers (2021-03-08T01:02:41Z) - Learning Human-Object Interaction Detection using Interaction Points [140.0200950601552]
We propose a novel fully-convolutional approach that directly detects the interactions between human-object pairs.
Our network predicts interaction points, which directly localize and classify the inter-action.
Experiments are performed on two popular benchmarks: V-COCO and HICO-DET.
arXiv Detail & Related papers (2020-03-31T08:42:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.