PrETi: Predicting Execution Time in Early Stage with LLVM and Machine Learning
- URL: http://arxiv.org/abs/2503.13679v1
- Date: Mon, 17 Mar 2025 19:32:26 GMT
- Title: PrETi: Predicting Execution Time in Early Stage with LLVM and Machine Learning
- Authors: Risheng Xu, Philipp Sieweck, Hermann von Hasseln, Dirk Nowotka,
- Abstract summary: preti is a framework for predicting software execution time during the early stages of development.<n>preti achieves an average Absolute Percentage Error (APE) of 11.98%, surpassing state-of-the-art methods.
- Score: 1.4586959818386764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce preti, a novel framework for predicting software execution time during the early stages of development. preti leverages an LLVM-based simulation environment to extract timing-related runtime information, such as the count of executed LLVM IR instructions. This information, combined with historical execution time data, is utilized to train machine learning models for accurate time prediction. To further enhance prediction accuracy, our approach incorporates simulations of cache accesses and branch prediction. The evaluations on public benchmarks demonstrate that preti achieves an average Absolute Percentage Error (APE) of 11.98\%, surpassing state-of-the-art methods. These results underscore the effectiveness and efficiency of preti as a robust solution for early-stage timing analysis.
Related papers
- Addressing Challenges in Time Series Forecasting: A Comprehensive Comparison of Machine Learning Techniques [8.962460460173958]
This paper briefly describes and compiles suitable algorithms for TS regression task.
We compare these algorithms against each other and the classic ARIMA method using diverse datasets.
The focus is on forecasting accuracy, particularly for long-term predictions.
arXiv Detail & Related papers (2025-03-26T01:55:56Z) - TimeCAP: Learning to Contextualize, Augment, and Predict Time Series Events with Large Language Model Agents [52.13094810313054]
TimeCAP is a time-series processing framework that creatively employs Large Language Models (LLMs) as contextualizers of time series data.<n>TimeCAP incorporates two independent LLM agents: one generates a textual summary capturing the context of the time series, while the other uses this enriched summary to make more informed predictions.<n> Experimental results on real-world datasets demonstrate that TimeCAP outperforms state-of-the-art methods for time series event prediction.
arXiv Detail & Related papers (2025-02-17T04:17:27Z) - Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.<n>We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.<n>We propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more computation-efficient metric for performance estimation.
We present FLP-M, a fundamental approach for performance prediction that addresses the practical need to integrate datasets from multiple sources during pre-training.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes:
Functional and Augmented Data Structures in Financial Forecasting [0.0]
We explore the application of Gaussian Processes (GPs) for predicting mean-reverting time series with an underlying structure.
GPs offer the potential to forecast not just the average prediction but the entire probability distribution over a future trajectory.
This is particularly beneficial in financial contexts, where accurate predictions alone may not suffice if incorrect volatility assessments lead to capital losses.
arXiv Detail & Related papers (2024-02-23T06:09:45Z) - Loss Shaping Constraints for Long-Term Time Series Forecasting [79.3533114027664]
We present a Constrained Learning approach for long-term time series forecasting that respects a user-defined upper bound on the loss at each time-step.
We propose a practical Primal-Dual algorithm to tackle it, and aims to demonstrate that it exhibits competitive average performance in time series benchmarks, while shaping the errors across the predicted window.
arXiv Detail & Related papers (2024-02-14T18:20:44Z) - Towards a Prediction of Machine Learning Training Time to Support
Continuous Learning Systems Development [5.207307163958806]
We present an empirical study of the Full.
Time Complexity (FPTC) approach by Zheng et al.
We study the formulations proposed for the Logistic Regression and Random Forest classifiers.
We observe how, from the conducted study, the prediction of training time is strictly related to the context.
arXiv Detail & Related papers (2023-09-20T11:35:03Z) - QBSD: Quartile-Based Seasonality Decomposition for Cost-Effective RAN KPI Forecasting [0.18416014644193066]
We introduce QBSD, a live single-step forecasting approach tailored to optimize the trade-off between accuracy and computational complexity.
QBSD has shown significant success with our real network RAN datasets of over several thousand cells.
Results demonstrate that the proposed method excels in runtime efficiency compared to the leading algorithms available.
arXiv Detail & Related papers (2023-06-09T15:59:27Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Mixed moving average field guided learning for spatio-temporal data [0.0]
We define a novel Bayesian-temporal embedding and a theory-guided machine learning approach to make ensemble forecasts.
We use Lipschitz predictors to determine fixed-time and any-time PAC in the batch learning setting.
We then test the performance of our learning methodology by using linear predictors and data sets simulated from a dependence- Ornstein-Uhlenbeck process.
arXiv Detail & Related papers (2023-01-02T16:11:05Z) - Self-Adaptive Forecasting for Improved Deep Learning on Non-Stationary
Time-Series [20.958959332978726]
SAF integrates a self-adaptation stage prior to forecasting based on backcasting'
Our method enables efficient adaptation of encoded representations to evolving distributions, leading to superior generalization.
On synthetic and real-world datasets in domains where time-series data are known to be notoriously non-stationary, such as healthcare and finance, we demonstrate a significant benefit of SAF.
arXiv Detail & Related papers (2022-02-04T21:54:10Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.