Long-VMNet: Accelerating Long-Form Video Understanding via Fixed Memory
- URL: http://arxiv.org/abs/2503.13707v1
- Date: Mon, 17 Mar 2025 20:25:41 GMT
- Title: Long-VMNet: Accelerating Long-Form Video Understanding via Fixed Memory
- Authors: Saket Gurukar, Asim Kadav,
- Abstract summary: Long-Video Memory Network, Long-VMNet, is a novel video understanding method.<n>Long-VMNet achieves improved efficiency by leveraging a neural sampler that identifies discriminative tokens.<n>Our results on the Rest-ADL dataset demonstrate an 18x -- 75x improvement in inference times for long-form video retrieval and answering questions.
- Score: 5.311777874655448
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-form video understanding is essential for various applications such as video retrieval, summarizing, and question answering. Yet, traditional approaches demand substantial computing power and are often bottlenecked by GPU memory. To tackle this issue, we present Long-Video Memory Network, Long-VMNet, a novel video understanding method that employs a fixed-size memory representation to store discriminative patches sampled from the input video. Long-VMNet achieves improved efficiency by leveraging a neural sampler that identifies discriminative tokens. Additionally, Long-VMNet only needs one scan through the video, greatly boosting efficiency. Our results on the Rest-ADL dataset demonstrate an 18x -- 75x improvement in inference times for long-form video retrieval and answering questions, with a competitive predictive performance.
Related papers
- ReWind: Understanding Long Videos with Instructed Learnable Memory [8.002949551539297]
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information.
We introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity.
We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks.
arXiv Detail & Related papers (2024-11-23T13:23:22Z) - LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding [65.46303012350207]
LongVU is an adaptive compression mechanism that reduces the number of video tokens while preserving visual details of long videos.
We leverage DINOv2 features to remove redundant frames that exhibit high similarity.
We perform spatial token reduction across frames based on their temporal dependencies.
arXiv Detail & Related papers (2024-10-22T21:21:37Z) - Visual Context Window Extension: A New Perspective for Long Video Understanding [45.134271969594614]
We tackle the challenge of long video understanding from the perspective of context windows.
We propose to adapt LMMs for long video understanding tasks by extending the visual context window.
Our method consistently improves the performance as the number of video frames increases.
arXiv Detail & Related papers (2024-09-30T07:25:16Z) - Hierarchical Memory for Long Video QA [78.72965584414368]
This paper describes our champion solution to the LOVEU Challenge @ CVPR'24, Track 1 (Long Video VQA)<n>We adopt a hierarchical memory mechanism named STAR Memory, that is capable of processing long videos with limited GPU memory (VRAM)<n>We further utilize the video and audio data of MovieChat-1K training set to fine-tune the pretrained weight released by Flash-VStream, achieving 1st place in the challenge.
arXiv Detail & Related papers (2024-06-30T06:08:12Z) - Streaming Long Video Understanding with Large Language Models [83.11094441893435]
VideoStreaming is an advanced vision-language large model (VLLM) for video understanding.
It capably understands arbitrary-length video with a constant number of video streaming tokens encoded and propagatedly selected.
Our model achieves superior performance and higher efficiency on long video benchmarks.
arXiv Detail & Related papers (2024-05-25T02:22:09Z) - Efficient Video Object Segmentation via Modulated Cross-Attention Memory [123.12273176475863]
We propose a transformer-based approach, named MAVOS, to model temporal smoothness without requiring frequent memory expansion.
Our MAVOS achieves a J&F score of 63.3% while operating at 37 frames per second (FPS) on a single V100 GPU.
arXiv Detail & Related papers (2024-03-26T17:59:58Z) - Memory-Efficient Continual Learning Object Segmentation for Long Video [7.9190306016374485]
We propose two novel techniques to reduce the memory requirement of Online VOS methods while improving modeling accuracy and generalization on long videos.
Motivated by the success of continual learning techniques in preserving previously-learned knowledge, here we propose Gated-Regularizer Continual Learning (GRCL) and a Reconstruction-based Memory Selection Continual Learning (RMSCL)
Experimental results show that the proposed methods are able to improve the performance of Online VOS models by more than 8%, with improved robustness on long-video datasets.
arXiv Detail & Related papers (2023-09-26T21:22:03Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
We present EVEREST, a surprisingly efficient MVA approach for video representation learning.
It finds tokens containing rich motion features and discards uninformative ones during both pre-training and fine-tuning.
Our method significantly reduces the computation and memory requirements of MVA.
arXiv Detail & Related papers (2022-11-19T09:57:01Z) - Recurrent Dynamic Embedding for Video Object Segmentation [54.52527157232795]
We propose a Recurrent Dynamic Embedding (RDE) to build a memory bank of constant size.
We propose an unbiased guidance loss during the training stage, which makes SAM more robust in long videos.
We also design a novel self-correction strategy so that the network can repair the embeddings of masks with different qualities in the memory bank.
arXiv Detail & Related papers (2022-05-08T02:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.