Reconstructing Cell Lineage Trees from Phenotypic Features with Metric Learning
- URL: http://arxiv.org/abs/2503.13925v1
- Date: Tue, 18 Mar 2025 05:41:03 GMT
- Title: Reconstructing Cell Lineage Trees from Phenotypic Features with Metric Learning
- Authors: Da Kuang, Guanwen Qiu, Junhyong Kim,
- Abstract summary: A key approach to studying developmental processes is to infer the tree graph of cell lineage division and differentiation histories.<n>Here, we introduce CellTreeQM, a novel deep learning method that learns an embedding space with geometric properties optimized for tree-graph inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How a single fertilized cell gives rise to a complex array of specialized cell types in development is a central question in biology. The cells grow, divide, and acquire differentiated characteristics through poorly understood molecular processes. A key approach to studying developmental processes is to infer the tree graph of cell lineage division and differentiation histories, providing an analytical framework for dissecting individual cells' molecular decisions during replication and differentiation. Although genetically engineered lineage-tracing methods have advanced the field, they are either infeasible or ethically constrained in many organisms. In contrast, modern single-cell technologies can measure high-content molecular profiles (e.g., transcriptomes) in a wide range of biological systems. Here, we introduce CellTreeQM, a novel deep learning method based on transformer architectures that learns an embedding space with geometric properties optimized for tree-graph inference. By formulating lineage reconstruction as a tree-metric learning problem, we have systematically explored supervised, weakly supervised, and unsupervised training settings and present a Lineage Reconstruction Benchmark to facilitate comprehensive evaluation of our learning method. We benchmarked the method on (1) synthetic data modeled via Brownian motion with independent noise and spurious signals and (2) lineage-resolved single-cell RNA sequencing datasets. Experimental results show that CellTreeQM recovers lineage structures with minimal supervision and limited data, offering a scalable framework for uncovering cell lineage relationships in challenging animal models. To our knowledge, this is the first method to cast cell lineage inference explicitly as a metric learning task, paving the way for future computational models aimed at uncovering the molecular dynamics of cell lineage.
Related papers
- GENERator: A Long-Context Generative Genomic Foundation Model [66.46537421135996]
We present GENERator, a generative genomic foundation model featuring a context length of 98k base pairs (bp) and 1.2B parameters.<n>Trained on an expansive dataset comprising 386B bp of DNA, the GENERator demonstrates state-of-the-art performance across both established and newly proposed benchmarks.<n>It also shows significant promise in sequence optimization, particularly through the prompt-responsive generation of enhancer sequences with specific activity profiles.
arXiv Detail & Related papers (2025-02-11T05:39:49Z) - TopoCellGen: Generating Histopathology Cell Topology with a Diffusion Model [32.670806339139034]
We propose a novel approach that integrates topological constraints into a diffusion model to improve the generation of realistic, contextually accurate cell topologies.
Our method refines the simulation of cell distributions and interactions, increasing the precision and interpretability of results in downstream tasks.
arXiv Detail & Related papers (2024-12-08T18:02:22Z) - Multi-Modal and Multi-Attribute Generation of Single Cells with CFGen [76.02070962797794]
This work introduces CellFlow for Generation (CFGen), a flow-based conditional generative model that preserves the inherent discreteness of single-cell data.<n>CFGen generates whole-genome multi-modal single-cell data reliably, improving the recovery of crucial biological data characteristics.
arXiv Detail & Related papers (2024-07-16T14:05:03Z) - Multicell-Fold: geometric learning in folding multicellular life [0.34952465649465553]
How a group of cells fold into specific structures is a central question in biology that defines how living organisms form.
We propose a geometric deep learning model that can predict multicellular folding and embryogenesis.
We successfully use our model to achieve two important tasks, interpretable 4-D morphological sequence alignment, and predicting local cell rearrangements.
arXiv Detail & Related papers (2024-07-09T17:21:49Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Causal machine learning for single-cell genomics [94.28105176231739]
We discuss the application of machine learning techniques to single-cell genomics and their challenges.
We first present the model that underlies most of current causal approaches to single-cell biology.
We then identify open problems in the application of causal approaches to single-cell data.
arXiv Detail & Related papers (2023-10-23T13:35:24Z) - Learning Causal Representations of Single Cells via Sparse Mechanism
Shift Modeling [3.2435888122704037]
We propose a deep generative model of single-cell gene expression data for which each perturbation is treated as an intervention targeting an unknown, but sparse, subset of latent variables.
We benchmark these methods on simulated single-cell data to evaluate their performance at latent units recovery, causal target identification and out-of-domain generalization.
arXiv Detail & Related papers (2022-11-07T15:47:40Z) - Topological Data Analysis in Time Series: Temporal Filtration and
Application to Single-Cell Genomics [13.173307471333619]
We propose the single-cell topological simplicial analysis (scTSA)
Applying this approach to the single-cell gene expression profiles from local networks of cells reveals a previously unseen topology of cellular ecology.
Benchmarked on the single-cell RNA-seq data of zebrafish embryogenesis spanning 38,731 cells, 25 cell types and 12 time steps, our approach highlights the gastrulation as the most critical stage.
arXiv Detail & Related papers (2022-04-29T12:46:14Z) - Interpretable Single-Cell Set Classification with Kernel Mean Embeddings [14.686560033030101]
Kernel Mean Embedding encodes the cellular landscape of each profiled biological sample.
We train a simple linear classifier and achieve state-of-the-art classification accuracy on 3 flow and mass datasets.
arXiv Detail & Related papers (2022-01-18T21:40:36Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.