Empowering LLMs in Decision Games through Algorithmic Data Synthesis
- URL: http://arxiv.org/abs/2503.13980v1
- Date: Tue, 18 Mar 2025 07:30:29 GMT
- Title: Empowering LLMs in Decision Games through Algorithmic Data Synthesis
- Authors: Haolin Wang, Xueyan Li, Yazhe Niu, Shuai Hu, Hongsheng Li,
- Abstract summary: Decision-making games serve as ideal sandboxes for evaluating and enhancing the reasoning abilities of Large Language Models.<n>We design data synthesis strategies and curate extensive offline datasets from two classic games, Doudizhu and Go.<n>We develop a suite of techniques to effectively incorporate this data into LLM training, resulting in two novel agents: Mastermind-Dou and Mastermind-Go.
- Score: 29.128280701799074
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have exhibited impressive capabilities across numerous domains, yet they often struggle with complex reasoning and decision-making tasks. Decision-making games, which inherently require multifaceted reasoning logic, serve as ideal sandboxes for evaluating and enhancing the reasoning abilities of LLMs. In this work, we first explore whether LLMs can master complex decision-making games through targeted post-training. To this end, we design data synthesis strategies and curate extensive offline datasets from two classic games, Doudizhu and Go. We further develop a suite of techniques to effectively incorporate this data into LLM training, resulting in two novel agents: Mastermind-Dou and Mastermind-Go. Our experimental results demonstrate that these Mastermind LLMs achieve competitive performance in their respective games. Additionally, we explore whether integrating decision-making data can enhance the general reasoning abilities of LLMs. Our findings suggest that such post-training improves certain aspects of reasoning, providing valuable insights for optimizing LLM data collection and synthesis strategies.
Related papers
- Teaching LLMs According to Their Aptitude: Adaptive Reasoning for Mathematical Problem Solving [55.895917967408586]
Existing approaches to mathematical reasoning with large language models rely on Chain-of-Thought (CoT) for generalizability or Tool-Integrated Reasoning (TIR) for precise computation.
We propose TATA (Teaching LLMs According to Their Aptitude), an adaptive framework that enables LLMs to personalize their reasoning strategy spontaneously.
arXiv Detail & Related papers (2025-02-17T16:56:23Z) - Satori: Reinforcement Learning with Chain-of-Action-Thought Enhances LLM Reasoning via Autoregressive Search [57.28671084993782]
Large language models (LLMs) have demonstrated remarkable reasoning capabilities across diverse domains.<n>Recent studies have shown that increasing test-time computation enhances LLMs' reasoning capabilities.<n>We propose a two-stage training paradigm: 1) a small-scale format tuning stage to internalize the COAT reasoning format and 2) a large-scale self-improvement stage leveraging reinforcement learning.
arXiv Detail & Related papers (2025-02-04T17:26:58Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoT is a gaming arena designed for rigorous assessment of Large Language Models.
We benchmark 17 prominent LLMs across eight games, encompassing various strategic abilities and game characteristics.
Our results suggest that GAMEBoT presents a significant challenge, even when LLMs are provided with detailed CoT prompts.
arXiv Detail & Related papers (2024-12-18T08:32:53Z) - Dynamic Ensemble Reasoning for LLM Experts [35.774197263383996]
We propose a Dynamic Ensemble Reasoning paradigm, called DER, to integrate the strengths of multiple LLM experts conditioned on dynamic inputs.<n>Our method uses fewer computational resources to achieve better performance compared to state-of-the-art baselines.
arXiv Detail & Related papers (2024-12-10T12:05:56Z) - Game-theoretic LLM: Agent Workflow for Negotiation Games [30.83905391503607]
This paper investigates the rationality of large language models (LLMs) in strategic decision-making contexts.
We design multiple game-theoretic that guide the reasoning and decision-making processes of LLMs.
The findings have implications for the development of more robust and strategically sound AI agents.
arXiv Detail & Related papers (2024-11-08T22:02:22Z) - LLM-PySC2: Starcraft II learning environment for Large Language Models [16.918044347226104]
This paper introduces a new environment that serves to develop Large Language Models (LLMs) based decision-making methodologies.
This environment is the first to offer the complete StarCraft II action space, multi-modal observation interfaces, and a structured game knowledge database.
arXiv Detail & Related papers (2024-11-08T06:04:22Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.<n>It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.<n>Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.