Speculative Decoding for Verilog: Speed and Quality, All in One
- URL: http://arxiv.org/abs/2503.14153v1
- Date: Tue, 18 Mar 2025 11:21:53 GMT
- Title: Speculative Decoding for Verilog: Speed and Quality, All in One
- Authors: Changran Xu, Yi Liu, Yunhao Zhou, Shan Huang, Ningyi Xu, Qiang Xu,
- Abstract summary: We introduce a novel application of speculative decoding for Verilog code generation.<n>Unlike standard tokenization schemes, our approach aligns decoding stops with syntactically significant tokens.<n>Our experimental results show that our method achieves up to a 5.05x speedup in Verilog code generation.
- Score: 14.64921497909531
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of large language models (LLMs) has revolutionized code generation tasks across various programming languages. However, the unique characteristics of programming languages, particularly those like Verilog with specific syntax and lower representation in training datasets, pose significant challenges for conventional tokenization and decoding approaches. In this paper, we introduce a novel application of speculative decoding for Verilog code generation, showing that it can improve both inference speed and output quality, effectively achieving speed and quality all in one. Unlike standard LLM tokenization schemes, which often fragment meaningful code structures, our approach aligns decoding stops with syntactically significant tokens, making it easier for models to learn the token distribution. This refinement addresses inherent tokenization issues and enhances the model's ability to capture Verilog's logical constructs more effectively. Our experimental results show that our method achieves up to a 5.05x speedup in Verilog code generation and increases pass@10 functional accuracy on RTLLM by up to 17.19% compared to conventional training strategies. These findings highlight speculative decoding as a promising approach to bridge the quality gap in code generation for specialized programming languages.
Related papers
- DeepRTL: Bridging Verilog Understanding and Generation with a Unified Representation Model [13.532046953850902]
We present DeepRTL, a unified representation model that excels in both Verilog understanding and generation.<n>Based on CodeT5+, DeepRTL is fine-tuned on a comprehensive dataset that aligns Verilog code with rich, multi-level natural language descriptions.<n>We introduce the first benchmark for Verilog understanding and take the initiative to apply embedding similarity and GPT Score to evaluate the models' understanding capabilities.
arXiv Detail & Related papers (2025-02-20T11:07:55Z) - Large Language Model for Verilog Generation with Code-Structure-Guided Reinforcement Learning [29.135207235743795]
This paper introduces VeriSeek, an LLM enhanced by reinforcement learning to achieve high Verilog code generation performance.
Our reinforcement learning approach employs code structure information as feedback signals to refine the pre-trained model.
Experiments show that VeriSeek outperforms state-of-the-art methods across multiple benchmarks.
arXiv Detail & Related papers (2024-07-21T11:25:21Z) - Decoding at the Speed of Thought: Harnessing Parallel Decoding of Lexical Units for LLMs [57.27982780697922]
Large language models have demonstrated exceptional capability in natural language understanding and generation.
However, their generation speed is limited by the inherently sequential nature of their decoding process.
This paper introduces Lexical Unit Decoding, a novel decoding methodology implemented in a data-driven manner.
arXiv Detail & Related papers (2024-05-24T04:35:13Z) - CodeGRAG: Bridging the Gap between Natural Language and Programming Language via Graphical Retrieval Augmented Generation [58.84212778960507]
We propose CodeGRAG, a Graphical Retrieval Augmented Code Generation framework to enhance the performance of LLMs.
CodeGRAG builds the graphical view of code blocks based on the control flow and data flow of them to fill the gap between programming languages and natural language.
Various experiments and ablations are done on four datasets including both the C++ and python languages to validate the hard meta-graph prompt, the soft prompting technique, and the effectiveness of the objectives for pretrained GNN expert.
arXiv Detail & Related papers (2024-05-03T02:48:55Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
Large Language Models (LLMs) have achieved remarkable progress in code generation.<n>CodeIP is a novel multi-bit watermarking technique that inserts additional information to preserve provenance details.<n>Experiments conducted on a real-world dataset across five programming languages demonstrate the effectiveness of CodeIP.
arXiv Detail & Related papers (2024-04-24T04:25:04Z) - A Multi-Expert Large Language Model Architecture for Verilog Code Generation [5.159745269633967]
This paper introduces an innovative multi-expert LLM architecture for Verilog code generation (MEV-LLM)
Our architecture uniquely integrates multiple LLMs, each specifically fine-tuned with a dataset that is categorized with respect to a distinct level of design complexity.
Empirical evidence from experiments highlights notable improvements in terms of the percentage of generated Verilog outputs that are syntactically and functionally correct.
arXiv Detail & Related papers (2024-04-11T16:58:29Z) - SparseCoder: Identifier-Aware Sparse Transformer for File-Level Code
Summarization [51.67317895094664]
This paper studies file-level code summarization, which can assist programmers in understanding and maintaining large source code projects.
We propose SparseCoder, an identifier-aware sparse transformer for effectively handling long code sequences.
arXiv Detail & Related papers (2024-01-26T09:23:27Z) - Speculative Contrastive Decoding [55.378200871224074]
Large language models(LLMs) exhibit exceptional performance in language tasks, yet their auto-regressive inference is limited due to high computational requirements and is sub-optimal due to the exposure bias.
Inspired by speculative decoding and contrastive decoding, we introduce Speculative Contrastive Decoding(SCD), a straightforward yet powerful decoding approach.
arXiv Detail & Related papers (2023-11-15T14:15:30Z) - VerilogEval: Evaluating Large Language Models for Verilog Code
Generation [6.88526119890374]
We present a comprehensive evaluation dataset consisting of 156 problems from the Verilog instructional website HDLBits.
The evaluation set consists of a diverse set of Verilog code generation tasks, ranging from simple combinational circuits to complex finite state machines.
arXiv Detail & Related papers (2023-09-14T09:15:34Z) - Decoder-Only or Encoder-Decoder? Interpreting Language Model as a
Regularized Encoder-Decoder [75.03283861464365]
The seq2seq task aims at generating the target sequence based on the given input source sequence.
Traditionally, most of the seq2seq task is resolved by an encoder to encode the source sequence and a decoder to generate the target text.
Recently, a bunch of new approaches have emerged that apply decoder-only language models directly to the seq2seq task.
arXiv Detail & Related papers (2023-04-08T15:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.