VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
- URL: http://arxiv.org/abs/2503.14350v2
- Date: Wed, 19 Mar 2025 20:33:40 GMT
- Title: VEGGIE: Instructional Editing and Reasoning of Video Concepts with Grounded Generation
- Authors: Shoubin Yu, Difan Liu, Ziqiao Ma, Yicong Hong, Yang Zhou, Hao Tan, Joyce Chai, Mohit Bansal,
- Abstract summary: We introduce VEGGIE, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions.<n> VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model.
- Score: 67.31149310468801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent video diffusion models have enhanced video editing, but it remains challenging to handle instructional editing and diverse tasks (e.g., adding, removing, changing) within a unified framework. In this paper, we introduce VEGGIE, a Video Editor with Grounded Generation from Instructions, a simple end-to-end framework that unifies video concept editing, grounding, and reasoning based on diverse user instructions. Specifically, given a video and text query, VEGGIE first utilizes an MLLM to interpret user intentions in instructions and ground them to the video contexts, generating frame-specific grounded task queries for pixel-space responses. A diffusion model then renders these plans and generates edited videos that align with user intent. To support diverse tasks and complex instructions, we employ a curriculum learning strategy: first aligning the MLLM and video diffusion model with large-scale instructional image editing data, followed by end-to-end fine-tuning on high-quality multitask video data. Additionally, we introduce a novel data synthesis pipeline to generate paired instructional video editing data for model training. It transforms static image data into diverse, high-quality video editing samples by leveraging Image-to-Video models to inject dynamics. VEGGIE shows strong performance in instructional video editing with different editing skills, outperforming the best instructional baseline as a versatile model, while other models struggle with multi-tasking. VEGGIE also excels in video object grounding and reasoning segmentation, where other baselines fail. We further reveal how the multiple tasks help each other and highlight promising applications like zero-shot multimodal instructional and in-context video editing.
Related papers
- InsViE-1M: Effective Instruction-based Video Editing with Elaborate Dataset Construction [10.855393943204728]
We present a high-quality Instruction-based Video Editing dataset with 1M triplets, namely InsViE-1M.
We first curate high-resolution and high-quality source videos and images, then design an effective editing-filtering pipeline to construct high-quality editing triplets for model training.
arXiv Detail & Related papers (2025-03-26T07:30:58Z) - SeƱorita-2M: A High-Quality Instruction-based Dataset for General Video Editing by Video Specialists [17.451911831989293]
We introduce Senorita-2M, a high-quality video editing dataset.<n>It is built by crafting four high-quality, specialized video editing models.<n>We propose a filtering pipeline to eliminate poorly edited video pairs.
arXiv Detail & Related papers (2025-02-10T17:58:22Z) - RACCooN: A Versatile Instructional Video Editing Framework with Auto-Generated Narratives [58.15403987979496]
This paper proposes RACCooN, a versatile and user-friendly video-to-paragraph-to-video generative framework.
Our video generative model incorporates auto-generated narratives or instructions to enhance the quality and accuracy of the generated content.
The proposed framework demonstrates impressive versatile capabilities in video-to-paragraph generation, video content editing, and can be incorporated into other SoTA video generative models for further enhancement.
arXiv Detail & Related papers (2024-05-28T17:46:36Z) - Reframe Anything: LLM Agent for Open World Video Reframing [0.8424099022563256]
We introduce Reframe Any Video Agent (RAVA), an AI-based agent that restructures visual content for video reframing.
RAVA operates in three stages: perception, where it interprets user instructions and video content; planning, where it determines aspect ratios and reframing strategies; and execution, where it invokes the editing tools to produce the final video.
Our experiments validate the effectiveness of RAVA in video salient object detection and real-world reframing tasks, demonstrating its potential as a tool for AI-powered video editing.
arXiv Detail & Related papers (2024-03-10T03:29:56Z) - VIDiff: Translating Videos via Multi-Modal Instructions with Diffusion
Models [96.55004961251889]
Video Instruction Diffusion (VIDiff) is a unified foundation model designed for a wide range of video tasks.
Our model can edit and translate the desired results within seconds based on user instructions.
We provide convincing generative results for diverse input videos and written instructions, both qualitatively and quantitatively.
arXiv Detail & Related papers (2023-11-30T18:59:52Z) - Ground-A-Video: Zero-shot Grounded Video Editing using Text-to-image
Diffusion Models [65.268245109828]
Ground-A-Video is a video-to-video translation framework for multi-attribute video editing.
It attains temporally consistent editing of input videos in a training-free manner.
Experiments and applications demonstrate that Ground-A-Video's zero-shot capacity outperforms other baseline methods in terms of edit-accuracy and frame consistency.
arXiv Detail & Related papers (2023-10-02T11:28:37Z) - InstructVid2Vid: Controllable Video Editing with Natural Language Instructions [97.17047888215284]
InstructVid2Vid is an end-to-end diffusion-based methodology for video editing guided by human language instructions.
Our approach empowers video manipulation guided by natural language directives, eliminating the need for per-example fine-tuning or inversion.
arXiv Detail & Related papers (2023-05-21T03:28:13Z) - The Anatomy of Video Editing: A Dataset and Benchmark Suite for
AI-Assisted Video Editing [90.59584961661345]
This work introduces the Anatomy of Video Editing, a dataset, and benchmark, to foster research in AI-assisted video editing.
Our benchmark suite focuses on video editing tasks, beyond visual effects, such as automatic footage organization and assisted video assembling.
To enable research on these fronts, we annotate more than 1.5M tags, with relevant concepts to cinematography, from 196176 shots sampled from movie scenes.
arXiv Detail & Related papers (2022-07-20T10:53:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.