Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
- URL: http://arxiv.org/abs/2503.14453v1
- Date: Tue, 18 Mar 2025 17:30:26 GMT
- Title: Online Conformal Probabilistic Numerics via Adaptive Edge-Cloud Offloading
- Authors: Qiushuo Hou, Sangwoo Park, Matteo Zecchin, Yunlong Cai, Guanding Yu, Osvaldo Simeone,
- Abstract summary: This work introduces a new method to calibrate the uncertainty sets produced by PLS with the aim of guaranteeing long-term coverage requirements.<n>The proposed method, referred to as online conformal prediction-PLS (OCP-PLS), assumes sporadic feedback from cloud to edge.<n>The validity of OCP-PLS is verified via experiments that bring insights into trade-offs between coverage, prediction set size, and cloud usage.
- Score: 52.499838151272016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Consider an edge computing setting in which a user submits queries for the solution of a linear system to an edge processor, which is subject to time-varying computing availability. The edge processor applies a probabilistic linear solver (PLS) so as to be able to respond to the user's query within the allotted time and computing budget. Feedback to the user is in the form of an uncertainty set. Due to model misspecification, the uncertainty set obtained via a direct application of PLS does not come with coverage guarantees with respect to the true solution of the linear system. This work introduces a new method to calibrate the uncertainty sets produced by PLS with the aim of guaranteeing long-term coverage requirements. The proposed method, referred to as online conformal prediction-PLS (OCP-PLS), assumes sporadic feedback from cloud to edge. This enables the online calibration of uncertainty thresholds via online conformal prediction (OCP), an online optimization method previously studied in the context of prediction models. The validity of OCP-PLS is verified via experiments that bring insights into trade-offs between coverage, prediction set size, and cloud usage.
Related papers
- Mirror Online Conformal Prediction with Intermittent Feedback [36.62015212865299]
This work introduces intermittent mirror online conformal prediction (IM-OCP), a novel runtime calibration framework.<n>IM-OCP features closed-form updates with minimal memory complexity, and is designed to operate under potentially intermittent feedback.
arXiv Detail & Related papers (2025-03-13T13:23:43Z) - Distilling Calibration via Conformalized Credal Inference [36.01369881486141]
One way to enhance reliability is through uncertainty quantification via Bayesian inference.
This paper introduces a low-complexity methodology to address this challenge by distilling calibration information from a more complex model.
Experiments on visual and language tasks demonstrate that the proposed approach, termed Conformalized Distillation for Credal Inference (CD-CI), significantly improves calibration performance.
arXiv Detail & Related papers (2025-01-10T15:57:23Z) - Adaptive Conformal Inference by Betting [51.272991377903274]
We consider the problem of adaptive conformal inference without any assumptions about the data generating process.<n>Existing approaches for adaptive conformal inference are based on optimizing the pinball loss using variants of online gradient descent.<n>We propose a different approach for adaptive conformal inference that leverages parameter-free online convex optimization techniques.
arXiv Detail & Related papers (2024-12-26T18:42:08Z) - Online scalable Gaussian processes with conformal prediction for guaranteed coverage [32.21093722162573]
The consistency of the resulting uncertainty values hinges on the premise that the learning function conforms to the properties specified by the GP model.
We propose to wed the GP with the prevailing conformal prediction (CP), a distribution-free post-processing framework that produces it prediction sets with a provably valid coverage.
arXiv Detail & Related papers (2024-10-07T19:22:15Z) - Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF [80.32171988565999]
We introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO)
VPO regularizes the maximum-likelihood estimate of the reward function with the corresponding value function.
Experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
arXiv Detail & Related papers (2024-05-29T17:51:42Z) - CAP: A General Algorithm for Online Selective Conformal Prediction with FCR Control [4.137346786534721]
It is important to control the real-time false coverage-statement rate (FCR) which measures the overall miscoverage level.<n>We develop a general framework named CAP that performs an adaptive pick rule on historical data to construct a calibration set.<n>We prove that CAP can achieve an exact selection-conditional coverage guarantee in the finite-sample and distribution-free regimes.
arXiv Detail & Related papers (2024-03-12T15:07:20Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Improved Online Conformal Prediction via Strongly Adaptive Online
Learning [86.4346936885507]
We develop new online conformal prediction methods that minimize the strongly adaptive regret.
We prove that our methods achieve near-optimal strongly adaptive regret for all interval lengths simultaneously.
Experiments show that our methods consistently obtain better coverage and smaller prediction sets than existing methods on real-world tasks.
arXiv Detail & Related papers (2023-02-15T18:59:30Z) - Optimal Adaptive Prediction Intervals for Electricity Load Forecasting
in Distribution Systems via Reinforcement Learning [1.5749416770494706]
We propose an optimal PI estimation approach, which is online and adaptive to different data distributions.
It relies on the online learning ability of reinforcement learning to integrate the two online tasks, i.e., the adaptive selection of probability proportion pairs and quantile predictions.
Case studies on both load and net load demonstrate that the proposed method can better adapt to data distribution compared with online central PIs method.
arXiv Detail & Related papers (2022-05-18T02:55:18Z) - Private Prediction Sets [72.75711776601973]
Machine learning systems need reliable uncertainty quantification and protection of individuals' privacy.
We present a framework that treats these two desiderata jointly.
We evaluate the method on large-scale computer vision datasets.
arXiv Detail & Related papers (2021-02-11T18:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.