Attribution Score Alignment in Explainable Data Management
- URL: http://arxiv.org/abs/2503.14469v2
- Date: Thu, 24 Apr 2025 22:13:50 GMT
- Title: Attribution Score Alignment in Explainable Data Management
- Authors: Felipe Azua, Leopoldo Bertossi,
- Abstract summary: We investigate the alignment of different scores on the basis of the queries at hand.<n>It turns out that the presence of Causal Responsibility makes a crucial difference in this regard.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Different attribution-scores have been proposed to quantify the relevance of database tuples for a query answer from a database. Among them, we find Causal Responsibility, the Shapley Value, the Banzhaf Power-Index, and the Causal Effect. They have been analyzed in isolation, mainly in terms of computational properties. In this work, we start an investigation into the alignment of these scores on the basis of the queries at hand; that is, on whether they induce compatible rankings of tuples. We are able to identify vast classes of queries for which some pairs of scores are always aligned, and others for which they are not. It turns out that the presence of exogenous tuples makes a crucial difference in this regard.
Related papers
- Unbiased Learning to Rank with Query-Level Click Propensity Estimation: Beyond Pointwise Observation and Relevance [74.43264459255121]
In real-world scenarios, users often click only one or two results after examining multiple relevant options.
We propose a query-level click propensity model to capture the probability that users will click on different result lists.
Our method introduces a Dual Inverse Propensity Weighting mechanism to address both relevance saturation and position bias.
arXiv Detail & Related papers (2025-02-17T03:55:51Z) - Attribution-Scores in Data Management and Explainable Machine Learning [0.0]
We describe recent research on the use of actual causality in the definition of responsibility scores in databases.
In the case of databases, useful connections with database repairs are illustrated and exploited.
For classification models, the responsibility score is properly extended and illustrated.
arXiv Detail & Related papers (2023-07-31T22:41:17Z) - From Database Repairs to Causality in Databases and Beyond [0.0]
We describe some recent approaches to score-based explanations for query answers in databases.
Special emphasis is placed on the use of counterfactual reasoning for score specification and computation.
arXiv Detail & Related papers (2023-06-15T04:08:23Z) - Learning List-Level Domain-Invariant Representations for Ranking [59.3544317373004]
We propose list-level alignment -- learning domain-invariant representations at the higher level of lists.
The benefits are twofold: it leads to the first domain adaptation generalization bound for ranking, in turn providing theoretical support for the proposed method.
arXiv Detail & Related papers (2022-12-21T04:49:55Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
We show that our model answers queries requiring complex reasoning patterns more effectively than existing KG completion algorithms.
The proposed model outperforms or performs competitively with state-of-the-art models on several KBQA benchmarks.
arXiv Detail & Related papers (2022-02-22T01:34:35Z) - Leveraging semantically similar queries for ranking via combining
representations [20.79800117378761]
In data-scarce settings, the amount of labeled data available for a particular query can lead to a highly variable and ineffective ranking function.
One way to mitigate the effect of the small amount of data is to leverage information from semantically similar queries.
We describe and explore this phenomenon in the context of the bias-variance trade off and apply it to the data-scarce settings of a Bing navigational graph and the Drosophila larva connectome.
arXiv Detail & Related papers (2021-06-23T18:36:20Z) - Applying Transfer Learning for Improving Domain-Specific Search
Experience Using Query to Question Similarity [0.0]
We discuss a framework for calculating similarities between a given input query and a set of predefined questions to retrieve the question which matches to it the most.
We have used it for the financial domain, but the framework is generalized for any domain-specific search engine and can be used in other domains as well.
arXiv Detail & Related papers (2021-01-07T03:27:32Z) - Surprise: Result List Truncation via Extreme Value Theory [92.5817701697342]
We propose a statistical method that produces interpretable and calibrated relevance scores at query time using nothing more than the ranked scores.
We demonstrate its effectiveness on the result list truncation task across image, text, and IR datasets.
arXiv Detail & Related papers (2020-10-19T19:15:50Z) - Robust Question Answering Through Sub-part Alignment [53.94003466761305]
We model question answering as an alignment problem.
We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets.
arXiv Detail & Related papers (2020-04-30T09:10:57Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
Existing work relies heavily on retrieval-style methods for estimating the relevance between queries and text segments.
We propose a coarse-to-fine modeling framework which introduces separate modules for estimating whether segments are relevant to the query.
We demonstrate that our framework outperforms strong comparison systems on standard QFS benchmarks.
arXiv Detail & Related papers (2020-04-06T22:35:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.