MusicInfuser: Making Video Diffusion Listen and Dance
- URL: http://arxiv.org/abs/2503.14505v1
- Date: Tue, 18 Mar 2025 17:59:58 GMT
- Title: MusicInfuser: Making Video Diffusion Listen and Dance
- Authors: Susung Hong, Ira Kemelmacher-Shlizerman, Brian Curless, Steven M. Seitz,
- Abstract summary: MusicInfuser is an approach for generating high-quality dance videos synchronized to a specified music track.<n>We show how existing video diffusion models can be adapted to align with musical inputs.
- Score: 20.41612388764672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce MusicInfuser, an approach for generating high-quality dance videos that are synchronized to a specified music track. Rather than attempting to design and train a new multimodal audio-video model, we show how existing video diffusion models can be adapted to align with musical inputs by introducing lightweight music-video cross-attention and a low-rank adapter. Unlike prior work requiring motion capture data, our approach fine-tunes only on dance videos. MusicInfuser achieves high-quality music-driven video generation while preserving the flexibility and generative capabilities of the underlying models. We introduce an evaluation framework using Video-LLMs to assess multiple dimensions of dance generation quality. The project page and code are available at https://susunghong.github.io/MusicInfuser.
Related papers
- GVMGen: A General Video-to-Music Generation Model with Hierarchical Attentions [13.9134271174972]
We present General Video-to-Music Generation model (GVMGen) for generating high-related music to the video input.
Our model employs hierarchical attentions to extract and align video features with music in both spatial and temporal dimensions.
Our method is versatile, capable of generating multi-style music from different video inputs, even in zero-shot scenarios.
arXiv Detail & Related papers (2025-01-17T06:30:11Z) - MuVi: Video-to-Music Generation with Semantic Alignment and Rhythmic Synchronization [52.498942604622165]
This paper presents MuVi, a framework to generate music that aligns with video content.
MuVi analyzes video content through a specially designed visual adaptor to extract contextually and temporally relevant features.
We show that MuVi demonstrates superior performance in both audio quality and temporal synchronization.
arXiv Detail & Related papers (2024-10-16T18:44:56Z) - VMAS: Video-to-Music Generation via Semantic Alignment in Web Music Videos [32.741262543860934]
We present a framework for learning to generate background music from video inputs.
We develop a generative video-music Transformer with a novel semantic video-music alignment scheme.
New temporal video encoder architecture allows us to efficiently process videos consisting of many densely sampled frames.
arXiv Detail & Related papers (2024-09-11T17:56:48Z) - VidMuse: A Simple Video-to-Music Generation Framework with Long-Short-Term Modeling [71.01050359126141]
We propose VidMuse, a framework for generating music aligned with video inputs.
VidMuse produces high-fidelity music that is both acoustically and semantically aligned with the video.
arXiv Detail & Related papers (2024-06-06T17:58:11Z) - Diff-BGM: A Diffusion Model for Video Background Music Generation [16.94631443719866]
We propose a high-quality music-video dataset with detailed annotation and shot detection to provide multi-modal information about the video and music.
We then present evaluation metrics to assess music quality, including music diversity and alignment between music and video.
We propose the Diff-BGM framework to automatically generate the background music for a given video, which uses different signals to control different aspects of the music during the generation process.
arXiv Detail & Related papers (2024-05-20T09:48:36Z) - Video2Music: Suitable Music Generation from Videos using an Affective
Multimodal Transformer model [32.801213106782335]
We develop a generative music AI framework, Video2Music, that can match a provided video.
In a thorough experiment, we show that our proposed framework can generate music that matches the video content in terms of emotion.
arXiv Detail & Related papers (2023-11-02T03:33:00Z) - V2Meow: Meowing to the Visual Beat via Video-to-Music Generation [47.076283429992664]
V2Meow is a video-to-music generation system capable of producing high-quality music audio for a diverse range of video input types.
It synthesizes high-fidelity music audio waveforms solely by conditioning on pre-trained general-purpose visual features extracted from video frames.
arXiv Detail & Related papers (2023-05-11T06:26:41Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
We present Dance2Music-GAN (D2M-GAN), a novel adversarial multi-modal framework that generates musical samples conditioned on dance videos.
Our proposed framework takes dance video frames and human body motion as input, and learns to generate music samples that plausibly accompany the corresponding input.
arXiv Detail & Related papers (2022-04-01T17:53:39Z) - Lets Play Music: Audio-driven Performance Video Generation [58.77609661515749]
We propose a new task named Audio-driven Per-formance Video Generation (APVG)
APVG aims to synthesize the video of a person playing a certain instrument guided by a given music audio clip.
arXiv Detail & Related papers (2020-11-05T03:13:46Z) - Foley Music: Learning to Generate Music from Videos [115.41099127291216]
Foley Music is a system that can synthesize plausible music for a silent video clip about people playing musical instruments.
We first identify two key intermediate representations for a successful video to music generator: body keypoints from videos and MIDI events from audio recordings.
We present a Graph$-$Transformer framework that can accurately predict MIDI event sequences in accordance with the body movements.
arXiv Detail & Related papers (2020-07-21T17:59:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.