Language Independent Named Entity Recognition via Orthogonal Transformation of Word Vectors
- URL: http://arxiv.org/abs/2503.14755v1
- Date: Tue, 18 Mar 2025 21:57:58 GMT
- Title: Language Independent Named Entity Recognition via Orthogonal Transformation of Word Vectors
- Authors: Omar E. Rakha, Hazem M. Abbas,
- Abstract summary: A model is proposed based on using Bidirectional LSTM/CRF with word embeddings to perform named entity recognition for any language.<n>This is done by training a model on a source language (English) and transforming word embeddings from the target language into word embeddings of the source language.<n> Evaluation of the model shows that by training a model on an English dataset the model was capable of detecting named entities in an Arabic dataset without neither training or fine tuning the model on an Arabic language dataset.
- Score: 0.653768519868854
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Word embeddings have been a key building block for NLP in which models relied heavily on word embeddings in many different tasks. In this paper, a model is proposed based on using Bidirectional LSTM/CRF with word embeddings to perform named entity recognition for any language. This is done by training a model on a source language (English) and transforming word embeddings from the target language into word embeddings of the source language by using an orthogonal linear transformation matrix. Evaluation of the model shows that by training a model on an English dataset the model was capable of detecting named entities in an Arabic dataset without neither training or fine tuning the model on an Arabic language dataset.
Related papers
- CompoundPiece: Evaluating and Improving Decompounding Performance of
Language Models [77.45934004406283]
We systematically study decompounding, the task of splitting compound words into their constituents.
We introduce a dataset of 255k compound and non-compound words across 56 diverse languages obtained from Wiktionary.
We introduce a novel methodology to train dedicated models for decompounding.
arXiv Detail & Related papers (2023-05-23T16:32:27Z) - Entity-Assisted Language Models for Identifying Check-worthy Sentences [23.792877053142636]
We propose a new uniform framework for text classification and ranking.
Our framework combines the semantic analysis of the sentences, with additional entity embeddings obtained through the identified entities within the sentences.
We extensively evaluate the effectiveness of our framework using two publicly available datasets from the CLEF's 2019 & 2020 CheckThat! Labs.
arXiv Detail & Related papers (2022-11-19T12:03:30Z) - Part-of-Speech Tagging of Odia Language Using statistical and Deep
Learning-Based Approaches [0.0]
This research work is to present a conditional random field (CRF) and deep learning-based approaches (CNN and Bi-LSTM) to develop Odia part-of-speech tagger.
It has been observed that Bi-LSTM model with character sequence feature and pre-trained word vector achieved a significant state-of-the-art result.
arXiv Detail & Related papers (2022-07-07T12:15:23Z) - A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text
Classification [16.684856745734944]
We present a multilingual bag-of-entities model that boosts the performance of zero-shot cross-lingual text classification.
It leverages the multilingual nature of Wikidata: entities in multiple languages representing the same concept are defined with a unique identifier.
A model trained on entity features in a resource-rich language can thus be directly applied to other languages.
arXiv Detail & Related papers (2021-10-15T01:10:50Z) - AraELECTRA: Pre-Training Text Discriminators for Arabic Language
Understanding [0.0]
We develop an Arabic language representation model, which we name AraELECTRA.
Our model is pretrained using the replaced token detection objective on large Arabic text corpora.
We show that AraELECTRA outperforms current state-of-the-art Arabic language representation models, given the same pretraining data and with even a smaller model size.
arXiv Detail & Related papers (2020-12-31T09:35:39Z) - Learning Contextual Representations for Semantic Parsing with
Generation-Augmented Pre-Training [86.91380874390778]
We present Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data.
Based on experimental results, neural semantics that leverage GAP MODEL obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-generative benchmarks.
arXiv Detail & Related papers (2020-12-18T15:53:50Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
Recent research indicates that pretraining cross-lingual language models on large-scale unlabeled texts yields significant performance improvements.
We propose a novel unsupervised feature decomposition method that can automatically extract domain-specific features from the entangled pretrained cross-lingual representations.
Our proposed model leverages mutual information estimation to decompose the representations computed by a cross-lingual model into domain-invariant and domain-specific parts.
arXiv Detail & Related papers (2020-11-23T16:00:42Z) - Introducing various Semantic Models for Amharic: Experimentation and
Evaluation with multiple Tasks and Datasets [19.855120632909124]
We introduce different semantic models for Amharic.
Models are build using word2Vec embeddings, distributional thesaurus (DT), contextual embeddings, and DT embeddings.
We find that newly trained models perform better than pre-trained multilingual models.
arXiv Detail & Related papers (2020-11-02T17:48:25Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
We propose a new approach for learning contextualised cross-lingual word embeddings based on a small parallel corpus.
Our method obtains word embeddings via an LSTM encoder-decoder model that simultaneously translates and reconstructs an input sentence.
arXiv Detail & Related papers (2020-10-27T22:24:01Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
We propose a training pipeline that enables pre-trained language models to generate high-quality paraphrases in an unsupervised setting.
Our recipe consists of task-adaptation, self-supervision, and a novel decoding algorithm named Dynamic Blocking.
We show with automatic and human evaluations that our approach achieves state-of-the-art performance on both the Quora Question Pair and the ParaNMT datasets.
arXiv Detail & Related papers (2020-10-24T11:55:28Z) - Grounded Compositional Outputs for Adaptive Language Modeling [59.02706635250856]
A language model's vocabulary$-$typically selected before training and permanently fixed later$-$affects its size.
We propose a fully compositional output embedding layer for language models.
To our knowledge, the result is the first word-level language model with a size that does not depend on the training vocabulary.
arXiv Detail & Related papers (2020-09-24T07:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.