SketchSplat: 3D Edge Reconstruction via Differentiable Multi-view Sketch Splatting
- URL: http://arxiv.org/abs/2503.14786v1
- Date: Tue, 18 Mar 2025 23:30:03 GMT
- Title: SketchSplat: 3D Edge Reconstruction via Differentiable Multi-view Sketch Splatting
- Authors: Haiyang Ying, Matthias Zwicker,
- Abstract summary: Edges are one of the most basic parametric primitives to describe structural information in 3D.<n>Previous methods usually reconstruct a 3D edge point set from multi-view 2D edge images, and then fit 3D edges to the point set.<n>We propose SketchSplat, a method to reconstruct accurate, complete, and compact 3D edges via differentiable multi-view sketch splatting.
- Score: 20.434979868697518
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edges are one of the most basic parametric primitives to describe structural information in 3D. In this paper, we study parametric 3D edge reconstruction from calibrated multi-view images. Previous methods usually reconstruct a 3D edge point set from multi-view 2D edge images, and then fit 3D edges to the point set. However, noise in the point set may cause gaps among fitted edges, and the recovered edges may not align with input multi-view images since the edge fitting depends only on the reconstructed 3D point set. To mitigate these problems, we propose SketchSplat, a method to reconstruct accurate, complete, and compact 3D edges via differentiable multi-view sketch splatting. We represent 3D edges as sketches, which are parametric lines and curves defined by attributes including control points, scales, and opacity. During edge reconstruction, we iteratively sample Gaussian points from a set of sketches and rasterize the Gaussians onto 2D edge images. Then the gradient of the image error with respect to the input 2D edge images can be back-propagated to optimize the sketch attributes. Our method bridges 2D edge images and 3D edges in a differentiable manner, which ensures that 3D edges align well with 2D images and leads to accurate and complete results. We also propose a series of adaptive topological operations and apply them along with the sketch optimization. The topological operations help reduce the number of sketches required while ensuring high accuracy, yielding a more compact reconstruction. Finally, we contribute an accurate 2D edge detector that improves the performance of both ours and existing methods. Experiments show that our method achieves state-of-the-art accuracy, completeness, and compactness on a benchmark CAD dataset.
Related papers
- LineGS : 3D Line Segment Representation on 3D Gaussian Splatting [0.0]
LineGS is a novel method that combines geometry-guided 3D line reconstruction with a 3D Gaussian splatting model.
The results show significant improvements in both geometric accuracy and model compactness compared to baseline methods.
arXiv Detail & Related papers (2024-11-30T13:29:36Z) - EdgeGaussians -- 3D Edge Mapping via Gaussian Splatting [33.43750488033706]
State-of-the-art image-based methods learn a 3D edge point cloud then fit 3D edges to it.<n>Our method learns explicitly the 3D edge points and their edge direction hence bypassing the need for point sampling.<n>Results show that the proposed method produces edges as accurate and complete as the state-of-the-art while being an order of magnitude faster.
arXiv Detail & Related papers (2024-09-19T16:28:45Z) - 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - Sketch3D: Style-Consistent Guidance for Sketch-to-3D Generation [55.73399465968594]
This paper proposes a novel generation paradigm Sketch3D to generate realistic 3D assets with shape aligned with the input sketch and color matching the textual description.
Three strategies are designed to optimize 3D Gaussians, i.e., structural optimization via a distribution transfer mechanism, color optimization with a straightforward MSE loss and sketch similarity optimization with a CLIP-based geometric similarity loss.
arXiv Detail & Related papers (2024-04-02T11:03:24Z) - SepicNet: Sharp Edges Recovery by Parametric Inference of Curves in 3D
Shapes [16.355677959323426]
We introduce SepicNet, a novel deep network for the detection and parametrization of sharp edges in 3D shapes as primitive curves.
We develop an adaptive point cloud sampling technique that captures the sharp features better than uniform sampling.
arXiv Detail & Related papers (2023-04-13T13:37:21Z) - SketchSampler: Sketch-based 3D Reconstruction via View-dependent Depth
Sampling [75.957103837167]
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape.
Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch.
arXiv Detail & Related papers (2022-08-14T16:37:51Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - Joint Deep Multi-Graph Matching and 3D Geometry Learning from
Inhomogeneous 2D Image Collections [57.60094385551773]
We propose a trainable framework for learning a deformable 3D geometry model from inhomogeneous image collections.
We in addition obtain the underlying 3D geometry of the objects depicted in the 2D images.
arXiv Detail & Related papers (2021-03-31T17:25:36Z) - Geometric Correspondence Fields: Learned Differentiable Rendering for 3D
Pose Refinement in the Wild [96.09941542587865]
We present a novel 3D pose refinement approach based on differentiable rendering for objects of arbitrary categories in the wild.
In this way, we precisely align 3D models to objects in RGB images which results in significantly improved 3D pose estimates.
We evaluate our approach on the challenging Pix3D dataset and achieve up to 55% relative improvement compared to state-of-the-art refinement methods in multiple metrics.
arXiv Detail & Related papers (2020-07-17T12:34:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.