Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
- URL: http://arxiv.org/abs/2503.14799v1
- Date: Wed, 19 Mar 2025 00:18:37 GMT
- Title: Pruning-Based TinyML Optimization of Machine Learning Models for Anomaly Detection in Electric Vehicle Charging Infrastructure
- Authors: Fatemeh Dehrouyeh, Ibrahim Shaer, Soodeh Nikan, Firouz Badrkhani Ajaei, Abdallah Shami,
- Abstract summary: This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting EVCI.<n> optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance.<n> Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.
- Score: 8.29566258132752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing need for real-time processing on IoT devices, optimizing machine learning (ML) models' size, latency, and computational efficiency is essential. This paper investigates a pruning method for anomaly detection in resource-constrained environments, specifically targeting Electric Vehicle Charging Infrastructure (EVCI). Using the CICEVSE2024 dataset, we trained and optimized three models-Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), and XGBoost-through hyperparameter tuning with Optuna, further refining them using SHapley Additive exPlanations (SHAP)-based feature selection (FS) and unstructured pruning techniques. The optimized models achieved significant reductions in model size and inference times, with only a marginal impact on their performance. Notably, our findings indicate that, in the context of EVCI, pruning and FS can enhance computational efficiency while retaining critical anomaly detection capabilities.
Related papers
- Optuna vs Code Llama: Are LLMs a New Paradigm for Hyperparameter Tuning? [42.362388367152256]
Large language models (LLMs) are used to fine-tune a parameter-efficient version of Code Llama using LoRA.
Our method achieves competitive or superior results in terms of Root Mean Square Error (RMSE) while significantly reducing computational overhead.
arXiv Detail & Related papers (2025-04-08T13:15:47Z) - Sample-aware Adaptive Structured Pruning for Large Language Models [14.605017410864583]
This study introduces AdaPruner, a sample-aware adaptive structured pruning framework for large language models (LLMs)<n>Specifically, AdaPruner effectively removes redundant parameters from LLMs by constructing a structured pruning solution space.<n>At a 20% pruning ratio, the model pruned with AdaPruner maintains 97% of the performance of the unpruned model.
arXiv Detail & Related papers (2025-03-08T12:00:21Z) - EDCA -- An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines [0.276240219662896]
This work presents EDCA, an Evolutionary Data Centric AutoML framework.<n>Data quality is usually an overlooked part of AutoML and continues to be a manual and time-consuming task.<n> EDCA was compared to FLAML and TPOT, two frameworks at the top of the AutoML benchmarks.
arXiv Detail & Related papers (2025-03-06T11:46:07Z) - Network Resource Optimization for ML-Based UAV Condition Monitoring with Vibration Analysis [54.550658461477106]
Condition Monitoring (CM) uses Machine Learning (ML) models to identify abnormal and adverse conditions.
This work explores the optimization of network resources for ML-based UAV CM frameworks.
By leveraging dimensionality reduction techniques, there is a 99.9% reduction in network resource consumption.
arXiv Detail & Related papers (2025-02-21T14:36:12Z) - DSMoE: Matrix-Partitioned Experts with Dynamic Routing for Computation-Efficient Dense LLMs [70.91804882618243]
This paper proposes DSMoE, a novel approach that achieves sparsification by partitioning pre-trained FFN layers into computational blocks.<n>We implement adaptive expert routing using sigmoid activation and straight-through estimators, enabling tokens to flexibly access different aspects of model knowledge.<n>Experiments on LLaMA models demonstrate that under equivalent computational constraints, DSMoE achieves superior performance compared to existing pruning and MoE approaches.
arXiv Detail & Related papers (2025-02-18T02:37:26Z) - Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - POMONAG: Pareto-Optimal Many-Objective Neural Architecture Generator [4.09225917049674]
Transferable NAS has emerged, generalizing the search process from dataset-dependent to task-dependent.
This paper introduces POMONAG, extending DiffusionNAG via a many-optimal diffusion process.
Results were validated on two search spaces -- NAS201 and MobileNetV3 -- and evaluated across 15 image classification datasets.
arXiv Detail & Related papers (2024-09-30T16:05:29Z) - REP: Resource-Efficient Prompting for Rehearsal-Free Continual Learning [23.92661395403251]
Recent rehearsal-free methods, guided by prompts, excel in vision-related continual learning (CL) with drifting data but lack resource efficiency.<n>We introduce Resource-Efficient Prompting (REP), which improves the computational and memory efficiency of prompt-based rehearsal-free methods.<n>Our approach employs swift prompt selection to refine input data using a carefully provisioned model.
arXiv Detail & Related papers (2024-06-07T09:17:33Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.