Graph-Based Re-ranking: Emerging Techniques, Limitations, and Opportunities
- URL: http://arxiv.org/abs/2503.14802v1
- Date: Wed, 19 Mar 2025 00:28:54 GMT
- Title: Graph-Based Re-ranking: Emerging Techniques, Limitations, and Opportunities
- Authors: Md Shahir Zaoad, Niamat Zawad, Priyanka Ranade, Richard Krogman, Latifur Khan, James Holt,
- Abstract summary: Graph Neural Networks (GNNs) have been proposed to demonstrate proficiency in graph learning for re-ranking.<n>There are ongoing limitations in modeling and evaluating input graph structures for training and evaluation.
- Score: 14.132502540570403
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Knowledge graphs have emerged to be promising datastore candidates for context augmentation during Retrieval Augmented Generation (RAG). As a result, techniques in graph representation learning have been simultaneously explored alongside principal neural information retrieval approaches, such as two-phased retrieval, also known as re-ranking. While Graph Neural Networks (GNNs) have been proposed to demonstrate proficiency in graph learning for re-ranking, there are ongoing limitations in modeling and evaluating input graph structures for training and evaluation for passage and document ranking tasks. In this survey, we review emerging GNN-based ranking model architectures along with their corresponding graph representation construction methodologies. We conclude by providing recommendations on future research based on community-wide challenges and opportunities.
Related papers
- Graph Foundation Models: Concepts, Opportunities and Challenges [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.<n>The capabilities of foundation models in generalization and adaptation motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.<n>This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
We present SimTeG, a frustratingly Simple approach for Textual Graph learning.
We first perform supervised parameter-efficient fine-tuning (PEFT) on a pre-trained LM on the downstream task.
We then generate node embeddings using the last hidden states of finetuned LM.
arXiv Detail & Related papers (2023-08-03T07:00:04Z) - Deep learning for dynamic graphs: models and benchmarks [16.851689741256912]
Recent progress in research on Deep Graph Networks (DGNs) has led to a maturation of the domain of learning on graphs.
Despite the growth of this research field, there are still important challenges that are yet unsolved.
arXiv Detail & Related papers (2023-07-12T12:02:36Z) - A Comprehensive Survey on Deep Graph Representation Learning [26.24869157855632]
Graph representation learning aims to encode high-dimensional sparse graph-structured data into low-dimensional dense vectors.
Traditional methods have limited model capacity which limits the learning performance.
Deep graph representation learning has shown great potential and advantages over shallow (traditional) methods.
arXiv Detail & Related papers (2023-04-11T08:23:52Z) - Counterfactual Learning on Graphs: A Survey [34.47646823407408]
Graph neural networks (GNNs) have achieved great success in representation learning on graphs.
Counterfactual learning on graphs has shown promising results in alleviating these drawbacks.
Various approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs.
arXiv Detail & Related papers (2023-04-03T21:42:42Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
Graph-level learning has been applied to many tasks including comparison, regression, classification, and more.
Traditional approaches to learning a set of graphs rely on hand-crafted features, such as substructures.
Deep learning has helped graph-level learning adapt to the growing scale of graphs by extracting features automatically and encoding graphs into low-dimensional representations.
arXiv Detail & Related papers (2023-01-14T09:15:49Z) - An Empirical Study of Retrieval-enhanced Graph Neural Networks [48.99347386689936]
Graph Neural Networks (GNNs) are effective tools for graph representation learning.
We propose a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models.
We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs.
arXiv Detail & Related papers (2022-06-01T09:59:09Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.