LogLLaMA: Transformer-based log anomaly detection with LLaMA
- URL: http://arxiv.org/abs/2503.14849v1
- Date: Wed, 19 Mar 2025 03:13:37 GMT
- Title: LogLLaMA: Transformer-based log anomaly detection with LLaMA
- Authors: Zhuoyi Yang, Ian G. Harris,
- Abstract summary: Transformer-based large language models (LLMs) are becoming popular for log anomaly detection.<n>In this paper, we propose LogLLaMA, a novel framework that leverages LLaMA2.
- Score: 5.265563006889007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Log anomaly detection refers to the task that distinguishes the anomalous log messages from normal log messages. Transformer-based large language models (LLMs) are becoming popular for log anomaly detection because of their superb ability to understand complex and long language patterns. In this paper, we propose LogLLaMA, a novel framework that leverages LLaMA2. LogLLaMA is first finetuned on normal log messages from three large-scale datasets to learn their patterns. After finetuning, the model is capable of generating successive log messages given previous log messages. Our generative model is further trained to identify anomalous log messages using reinforcement learning (RL). The experimental results show that LogLLaMA outperforms the state-of-the-art approaches for anomaly detection on BGL, Thunderbird, and HDFS datasets.
Related papers
- LogLLM: Log-based Anomaly Detection Using Large Language Models [7.7704116297749675]
We propose LogLLM, a log-based anomaly detection framework that leverages large language models (LLMs)<n>LogLLM employs BERT for extracting semantic vectors from log messages, while utilizing Llama, a transformer decoder-based model, for classifying log sequences.<n>Our framework is trained through a novel three-stage procedure designed to enhance performance and adaptability.
arXiv Detail & Related papers (2024-11-13T12:18:00Z) - DALD: Improving Logits-based Detector without Logits from Black-box LLMs [56.234109491884126]
Large Language Models (LLMs) have revolutionized text generation, producing outputs that closely mimic human writing.
We present Distribution-Aligned LLMs Detection (DALD), an innovative framework that redefines the state-of-the-art performance in black-box text detection.
DALD is designed to align the surrogate model's distribution with that of unknown target LLMs, ensuring enhanced detection capability and resilience against rapid model iterations.
arXiv Detail & Related papers (2024-06-07T19:38:05Z) - LogELECTRA: Self-supervised Anomaly Detection for Unstructured Logs [0.0]
The goal of log-based anomaly detection is to automatically detect system anomalies by analyzing the large number of logs generated in a short period of time.
Previous studies have used a log to extract templates from unstructured log data and detect anomalies on the basis of patterns of the template occurrences.
We propose LogELECTRA, a new log anomaly detection model that analyzes a single line of log messages more deeply on the basis of self-supervised anomaly detection.
arXiv Detail & Related papers (2024-02-16T01:47:02Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - LogGPT: Log Anomaly Detection via GPT [15.790373280124196]
We propose LogGPT, a novel framework that employs GPT for log anomaly detection.
LogGPT is first trained to predict the next log entry based on the preceding sequence.
We propose a novel reinforcement learning strategy to finetune the model specifically for the log anomaly detection task.
arXiv Detail & Related papers (2023-09-25T19:29:50Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - LAnoBERT: System Log Anomaly Detection based on BERT Masked Language
Model [12.00171674362062]
The aim of system log anomaly detection is to promptly identify anomalies while minimizing human intervention.
Previous studies performed anomaly detection through algorithms after converting various forms of log data into a standardized template.
In this study, we propose LAnoBERT, exhibiting excellent natural language processing performance.
arXiv Detail & Related papers (2021-11-18T07:46:35Z) - Log-based Anomaly Detection Without Log Parsing [7.66638994053231]
We propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing.
Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages.
Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.
arXiv Detail & Related papers (2021-08-04T10:42:13Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.