Phases and propagation of closed p-brane
- URL: http://arxiv.org/abs/2503.14902v1
- Date: Wed, 19 Mar 2025 05:04:07 GMT
- Title: Phases and propagation of closed p-brane
- Authors: Kiyoharu Kawana,
- Abstract summary: We study phases and propagation of closed $p$-brane within the framework of effective field theory with higher-form global symmetries.<n>We find the (functional) plane-wave solutions for the kinetic terms and derive a path-integral representation of the brane propagator.<n>Although these results are quite intriguing, we also point out that the Born-Oppenheimer approximation is invalid in the point-particle limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study phases and propagation of closed $p$-brane within the framework of effective field theory with higher-form global symmetries, i.e., {\it brane-field theory}. We extend our previous studies by including the kinetic term of the center-of-mass motion as well as the kinetic term for the relative motions constructed by the area derivatives. This inclusion gives rise to another scalar Nambu-Goldstone mode in the broken phase, enriching the phase structures of $p$-brane. For example, when the higher-form global symmetries are discrete ones, we show that the low-energy effective theory in the broken phase is described by a topological field theory of the axion $\varphi(X)$ and $p$-form field $A_p^{}(X)$ with multiple (emergent) higher-form global symmetries. After the mean-field analysis, we investigate the propagation of $p$-brane in the present framework. We find the (functional) plane-wave solutions for the kinetic terms and derive a path-integral representation of the brane propagator. This representation motivates us to study the brane propagation within the Born-Oppenheimer approximation, where the volume of $p$-brane is treated as constant. In the volume-less limit (i.e. point-particle limit), the propagator reduces to the ordinary propagator of relativistic particle, whereas it describes the propagation of the area elements in the large-volume limit. Correspondingly, it is shown that the Hausdorff dimension of $p$-brane varies from $2$ to $2(p+1)$ as we increase the $p$-brane volume within the Born-Oppenheimer approximation. Although these results are quite intriguing, we also point out that the Born-Oppenheimer approximation is invalid in the point-particle limit, highlighting the quantum nature of $p$-brane as an extended object in spacetime.
Related papers
- Berry Phase in Non-Perturbative QED [0.0]
We study QED$_4$ in the adiabatic approximation, incorporating global topological effects associated with the $U(1)$ Berry connection.
Our results reveal that even in Abelian gauge theory, the infrared regime can exhibit global effects beyond the reach of local or perturbative descriptions.
arXiv Detail & Related papers (2025-03-31T15:13:08Z) - Measurement-induced Lévy flights of quantum information [38.68022950138448]
We explore a model of free fermions in one dimension subject to frustrated local measurements across adjacent sites.
For maximal misalignment, superdiffusive behavior emerges from the vanishing of the measurement-induced quasiparticle decay rate.
Our findings show how intricate fractal-scaling entanglement can be produced for local Hamiltonians.
arXiv Detail & Related papers (2025-01-22T14:29:13Z) - Local quenches in fracton field theory: Lieb-Robinson bound, non-causal dynamics and fractal excitation patterns [37.69303106863453]
We study the out-of-equilibrium dynamics induced by a local perturbation in fracton field theory.
For the theory in finite volume, we show that the fracton wave front acquires fractal shape with non-trivial Hausdorff dimension.
arXiv Detail & Related papers (2023-10-17T12:21:15Z) - $\mathbb{Z}_N$ lattice gauge theories with matter fields [0.0]
We study fermions and bosons in $mathbb Z_N$ lattice gauge theories.
We present analytical arguments for the most important phases and estimates for phase boundaries of the model.
arXiv Detail & Related papers (2023-08-24T21:05:15Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - Ultracold spin-balanced fermionic quantum liquids with renormalized
$P$-wave interactions [0.0]
We consider a spin-balanced degenerate gas of spin-1/2 fermions governed by low-energy $P$-wave interactions.
The energy per particle $barcalE$ in the many-body system is calculated by resumming the ladder diagrams.
arXiv Detail & Related papers (2021-07-16T18:00:01Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - The Geometry of Time in Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We continue the study of nonrelativistic quantum gravity associated with a family of Ricci flow equations.
This topological gravity is of the cohomological type, and it exhibits an $cal N=2$ extended BRST symmetry.
We demonstrate a standard one-step BRST gauge-fixing of a theory whose fields are $g_ij$, $ni$ and $n$, and whose gauge symmetries consist of (i) the topological deformations of $g_ij$, and (ii) the ultralocal nonrelativistic limit of space
arXiv Detail & Related papers (2020-11-12T06:57:10Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.