Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift
- URL: http://arxiv.org/abs/2503.14910v1
- Date: Wed, 19 Mar 2025 05:25:52 GMT
- Title: Robust Distribution Alignment for Industrial Anomaly Detection under Distribution Shift
- Authors: Jingyi Liao, Xun Xu, Yongyi Su, Rong-Cheng Tu, Yifan Liu, Dacheng Tao, Xulei Yang,
- Abstract summary: Anomaly detection plays a crucial role in quality control for industrial applications.<n>Existing methods attempt to address domain shifts by training generalizable models.<n>Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
- Score: 51.24522135151649
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection plays a crucial role in quality control for industrial applications. However, ensuring robustness under unseen domain shifts such as lighting variations or sensor drift remains a significant challenge. Existing methods attempt to address domain shifts by training generalizable models but often rely on prior knowledge of target distributions and can hardly generalise to backbones designed for other data modalities. To overcome these limitations, we build upon memory-bank-based anomaly detection methods, optimizing a robust Sinkhorn distance on limited target training data to enhance generalization to unseen target domains. We evaluate the effectiveness on both 2D and 3D anomaly detection benchmarks with simulated distribution shifts. Our proposed method demonstrates superior results compared with state-of-the-art anomaly detection and domain adaptation methods.
Related papers
- Generalized Diffusion Detector: Mining Robust Features from Diffusion Models for Domain-Generalized Detection [0.0]
Domain generalization (DG) for object detection aims to enhance detectors' performance in unseen scenarios.<n>Recent diffusion models have demonstrated remarkable capabilities in diverse scene generation.<n>We propose an efficient knowledge transfer framework that enables detectors to inherit the generalization capabilities of diffusion models.
arXiv Detail & Related papers (2025-03-03T22:36:22Z) - Breaking the Bias: Recalibrating the Attention of Industrial Anomaly Detection [20.651257973799527]
Recalibrating Attention of Industrial Anomaly Detection (RAAD) is a framework that systematically decomposes and recalibrates attention maps.
HQS dynamically adjusts bit-widths based on the hierarchical nature of attention maps.
We validate the effectiveness of RAAD on 32 datasets using a single 3090ti.
arXiv Detail & Related papers (2024-12-11T08:31:47Z) - DiffuBox: Refining 3D Object Detection with Point Diffusion [74.01759893280774]
We introduce a novel diffusion-based box refinement approach to ensure robust 3D object detection and localization.<n>This method employs a domain-agnostic diffusion model conditioned on the LiDAR points surrounding a coarse bounding box, to simultaneously refine the box's location, size, and orientation.<n>Our results reveal significant improvements across different datasets, object classes and detectors.
arXiv Detail & Related papers (2024-05-25T03:14:55Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Few-Shot Anomaly Detection with Adversarial Loss for Robust Feature
Representations [8.915958745269442]
Anomaly detection is a critical and challenging task that aims to identify data points deviating from normal patterns and distributions within a dataset.
Various methods have been proposed using a one-class-one-model approach, but these techniques often face practical problems such as memory inefficiency and the requirement of sufficient data for training.
We propose a few-shot anomaly detection method that integrates adversarial training loss to obtain more robust and generalized feature representations.
arXiv Detail & Related papers (2023-12-04T09:45:02Z) - Exploring the Relationship between Samples and Masks for Robust Defect
Localization [1.90365714903665]
This paper proposes a one-stage framework that detects defective patterns directly without the modeling process.
Explicit information that could indicate the position of defects is intentionally excluded to avoid learning any direct mapping.
Results show that the proposed method is 2.9% higher than the SOTA methods in F1-Score, while substantially outperforming SOTA methods in generalizability.
arXiv Detail & Related papers (2023-06-19T06:41:19Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
This paper proposes a novel adversarial scoring network (ASNet) to bridge the gap across domains from coarse to fine granularity.
Three sets of migration experiments show that the proposed methods achieve state-of-the-art counting performance.
arXiv Detail & Related papers (2021-07-27T14:47:24Z) - Unsupervised Domain Adaptive 3D Detection with Multi-Level Consistency [90.71745178767203]
Deep learning-based 3D object detection has achieved unprecedented success with the advent of large-scale autonomous driving datasets.
Existing 3D domain adaptive detection methods often assume prior access to the target domain annotations, which is rarely feasible in the real world.
We study a more realistic setting, unsupervised 3D domain adaptive detection, which only utilizes source domain annotations.
arXiv Detail & Related papers (2021-07-23T17:19:23Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
Domain adaptation (DA) aims at transferring knowledge from a labeled source domain to an unlabeled target domain.
We present a method of regressive domain adaptation (RegDA) for unsupervised keypoint detection.
Our method brings large improvement by 8% to 11% in terms of PCK on different datasets.
arXiv Detail & Related papers (2021-03-10T16:45:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.