Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering
- URL: http://arxiv.org/abs/2503.14996v1
- Date: Wed, 19 Mar 2025 08:45:03 GMT
- Title: Right Answer, Wrong Score: Uncovering the Inconsistencies of LLM Evaluation in Multiple-Choice Question Answering
- Authors: Francesco Maria Molfese, Luca Moroni, Luca Gioffrè, Alessandro Scirè, Simone Conia, Roberto Navigli,
- Abstract summary: One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA)<n>In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons.
- Score: 78.89231943329885
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: One of the most widely used tasks to evaluate Large Language Models (LLMs) is Multiple-Choice Question Answering (MCQA). While open-ended question answering tasks are more challenging to evaluate, MCQA tasks are, in principle, easier to assess, as the model's answer is thought to be simple to extract and is directly compared to a set of predefined choices. However, recent studies have started to question the reliability of MCQA evaluation, showing that multiple factors can significantly impact the reported performance of LLMs, especially when the model generates free-form text before selecting one of the answer choices. In this work, we shed light on the inconsistencies of MCQA evaluation strategies, which can lead to inaccurate and misleading model comparisons. We systematically analyze whether existing answer extraction methods are aligned with human judgment, and how they are influenced by answer constraints in the prompt across different domains. Our experiments demonstrate that traditional evaluation strategies often underestimate LLM capabilities, while LLM-based answer extractors are prone to systematic errors. Moreover, we reveal a fundamental trade-off between including format constraints in the prompt to simplify answer extraction and allowing models to generate free-form text to improve reasoning. Our findings call for standardized evaluation methodologies and highlight the need for more reliable and consistent MCQA evaluation practices.
Related papers
- LLMs Can Generate a Better Answer by Aggregating Their Own Responses [83.69632759174405]
Large Language Models (LLMs) have shown remarkable capabilities across tasks, yet they often require additional prompting techniques when facing complex problems.<n>We argue this limitation stems from the fact that common LLM post-training procedures lack explicit supervision for discriminative judgment tasks.<n>We propose Generative Self-Aggregation (GSA), a novel prompting method that improves answer quality without requiring the model's discriminative capabilities.
arXiv Detail & Related papers (2025-03-06T05:25:43Z) - CoT-UQ: Improving Response-wise Uncertainty Quantification in LLMs with Chain-of-Thought [10.166370877826486]
Large language models (LLMs) excel in many tasks but struggle to accurately quantify uncertainty in their generated responses.<n>Existing uncertainty quantification (UQ) methods for LLMs are primarily prompt-wise rather than response-wise, which incurs high computational costs.<n>We propose CoT-UQ, a response-wise UQ framework that integrates LLMs' inherent reasoning capabilities through Chain-of-Thought (CoT) into the UQ process.
arXiv Detail & Related papers (2025-02-24T14:48:06Z) - Reference-Guided Verdict: LLMs-as-Judges in Automatic Evaluation of Free-Form Text [12.879551933541345]
Large Language Models (LLMs) are capable of generating human-like conversations.
Conventional metrics like BLEU and ROUGE are inadequate for capturing the subtle semantics and contextual richness of such generative outputs.
We propose a reference-guided verdict method that automates the evaluation process by leveraging multiple LLMs-as-judges.
arXiv Detail & Related papers (2024-08-17T16:01:45Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Can multiple-choice questions really be useful in detecting the abilities of LLMs? [15.756543037102256]
Multiple-choice questions (MCQs) are widely used in the evaluation of large language models (LLMs)
The misalignment between the task and the evaluation method demands a thoughtful analysis of MCQ's efficacy.
We evaluate nine LLMs on four question-answering (QA) datasets in two languages: Chinese and English.
arXiv Detail & Related papers (2024-03-26T14:43:48Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - LLMs May Perform MCQA by Selecting the Least Incorrect Option [29.202758753639078]
Large Language Models (LLMs) have markedly enhanced performance across a variety of tasks.<n>The adoption of Multiple Choice Question Answering (MCQA) as a benchmark for assessing LLMs has gained considerable traction.<n>However, concerns regarding the robustness of this evaluative method persist.
arXiv Detail & Related papers (2024-02-02T12:07:00Z) - CFMatch: Aligning Automated Answer Equivalence Evaluation with Expert Judgments For Open-Domain Question Answering [14.366087533102656]
Question answering (QA) can only make progress if we know if an answer is correct.
Current evaluation metrics to determine answer equivalence (AE) often do not align with human judgments.
arXiv Detail & Related papers (2024-01-24T01:30:25Z) - InfiMM-Eval: Complex Open-Ended Reasoning Evaluation For Multi-Modal
Large Language Models [50.03163753638256]
Multi-modal Large Language Models (MLLMs) are increasingly prominent in the field of artificial intelligence.
Our benchmark comprises three key reasoning categories: deductive, abductive, and analogical reasoning.
We evaluate a selection of representative MLLMs using this rigorously developed open-ended multi-step elaborate reasoning benchmark.
arXiv Detail & Related papers (2023-11-20T07:06:31Z) - Momentum Contrastive Pre-training for Question Answering [54.57078061878619]
MCROSS introduces a momentum contrastive learning framework to align the answer probability between cloze-like and natural query-passage sample pairs.
Our method achieves noticeable improvement compared with all baselines in both supervised and zero-shot scenarios.
arXiv Detail & Related papers (2022-12-12T08:28:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.