PointSFDA: Source-free Domain Adaptation for Point Cloud Completion
- URL: http://arxiv.org/abs/2503.15144v1
- Date: Wed, 19 Mar 2025 12:09:45 GMT
- Title: PointSFDA: Source-free Domain Adaptation for Point Cloud Completion
- Authors: Xing He, Zhe Zhu, Liangliang Nan, Honghua Chen, Jing Qin, Mingqiang Wei,
- Abstract summary: We propose an effective yet simple source-free domain adaptation framework for point cloud completion.<n>PointSFDA uses only a pretrained source model and unlabeled target data for adaptation.<n>Our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion.
- Score: 27.48403130855686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional methods for point cloud completion, typically trained on synthetic datasets, face significant challenges when applied to out-of-distribution real-world scans. In this paper, we propose an effective yet simple source-free domain adaptation framework for point cloud completion, termed \textbf{PointSFDA}. Unlike unsupervised domain adaptation that reduces the domain gap by directly leveraging labeled source data, PointSFDA uses only a pretrained source model and unlabeled target data for adaptation, avoiding the need for inaccessible source data in practical scenarios. Being the first source-free domain adaptation architecture for point cloud completion, our method offers two core contributions. First, we introduce a coarse-to-fine distillation solution to explicitly transfer the global geometry knowledge learned from the source dataset. Second, as noise may be introduced due to domain gaps, we propose a self-supervised partial-mask consistency training strategy to learn local geometry information in the target domain. Extensive experiments have validated that our method significantly improves the performance of state-of-the-art networks in cross-domain shape completion. Our code is available at \emph{\textcolor{magenta}{https://github.com/Starak-x/PointSFDA}}.
Related papers
- Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
compositional semantic mixing represents the first unsupervised domain adaptation technique for point cloud segmentation.
We present a two-branch symmetric network architecture capable of concurrently processing point clouds from a source domain (e.g. synthetic) and point clouds from a target domain (e.g. real-world)
arXiv Detail & Related papers (2023-08-28T14:43:36Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - ProCST: Boosting Semantic Segmentation using Progressive Cyclic
Style-Transfer [38.03127458140549]
We propose a novel two-stage framework for improving domain adaptation techniques.
In the first step, we progressively train a multi-scale neural network to perform an initial transfer between the source data to the target data.
This new data has a reduced domain gap from the desired target domain, and the applied UDA approach further closes the gap.
arXiv Detail & Related papers (2022-04-25T18:01:05Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Domain Adaptive Semantic Segmentation without Source Data [50.18389578589789]
We investigate domain adaptive semantic segmentation without source data, which assumes that the model is pre-trained on the source domain.
We propose an effective framework for this challenging problem with two components: positive learning and negative learning.
Our framework can be easily implemented and incorporated with other methods to further enhance the performance.
arXiv Detail & Related papers (2021-10-13T04:12:27Z) - Generalized Source-free Domain Adaptation [47.907168218249694]
We propose a new domain adaptation paradigm called Generalized Source-free Domain Adaptation (G-SFDA)
For target performance our method is on par with or better than existing DA and SFDA methods, specifically it achieves state-of-the-art performance (85.4%) on VisDA.
arXiv Detail & Related papers (2021-08-03T16:34:12Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
We propose a curriculum-style self-training approach for source-free domain adaptive semantic segmentation.
Our method yields state-of-the-art performance on source-free semantic segmentation tasks for both synthetic-to-real and adverse conditions.
arXiv Detail & Related papers (2021-06-22T10:21:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.