Cooling strongly self-organized particles using adiabatic demagnetization
- URL: http://arxiv.org/abs/2503.15180v1
- Date: Wed, 19 Mar 2025 13:07:08 GMT
- Title: Cooling strongly self-organized particles using adiabatic demagnetization
- Authors: Simon B. Jäger,
- Abstract summary: We study the dynamics of polarizable particles coupled to a lossy cavity mode driven by a laser.<n>Using a two-stage cooling protocol we show that the particles' kinetic energy can be reduced down to the recoil energy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the dynamics of polarizable particles coupled to a lossy cavity mode that are transversally driven by a laser. Our analysis is performed in the regime where the cavity linewidth exceeds the recoil frequency by several orders of magnitude. Using a two-stage cooling protocol we show that the particles' kinetic energy can be reduced down to the recoil energy. This cooling protocol relies in its first stage on a high laser power such that the particles cool into a strongly self-organized pattern. This can be seen as a strongly magnetized state. In a second stage we adiabatically ramp down the laser intensity such that the particles' kinetic energy is transferred to their potential energy and the particles are ``demagnetized''. In this second stage we optimize the ramping speed which needs to be fast enough to avoid unwanted heating and slow enough such that the dynamics remains to good approximation adiabatic.
Related papers
- An anti-maser for quantum-limited cooling of a microwave cavity [58.720142291102135]
We experimentally demonstrate how to generate a state in condensed matter at moderate cryogenic temperatures.
This state is then used to efficiently remove microwave photons from a cavity.
Such an "anti-maser" device could be extremely beneficial for applications that would normally require cooling to millikelvin temperatures.
arXiv Detail & Related papers (2023-07-24T11:12:29Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Cyclic Superconducting Quantum Refrigerators Using Guided Fluxon
Propagation [0.0]
We propose cyclic quantum refrigeration in solid-state, employing a gas of magnetic field vortices in a type-II superconductor as the cooling agent.
Our cooling principle can offer significant cooling for on-chip micro-refrigeration purposes, by locally cooling below the base temperatures achievable in a conventional dilution refrigerator.
arXiv Detail & Related papers (2022-12-01T04:52:30Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Scalable all-optical cold damping of levitated nanoparticles [3.0112534079486846]
We introduce a novel all-optical cold damping scheme based on spatial modulation of the trap position.
We show that the technique cools the center-of-mass motion of particles down to $17,$mK at a pressure of $2 times 10-6,$mbar.
Our work paves the way towards studying quantum interactions between particles, achieving 3D quantum control of particle motion without cavity-based cooling, electrodes or charged particles.
arXiv Detail & Related papers (2022-05-09T17:57:20Z) - Sympathetic cooling of a trapped proton mediated by an LC circuit [0.0]
We demonstrate sympathetic cooling of a single proton using laser-cooled Be+ ions in spatially separated Penning traps.
As this technique uses only image-current interactions, it can be easily applied to an experiment with antiprotons.
arXiv Detail & Related papers (2021-08-29T00:48:25Z) - Prospects for single photon sideband cooling of optically trapped
neutral atoms [0.0]
We propose a novel cooling scheme for realising single photon sideband cooling on particles trapped in a state-dependent optical potential.
We develop a master rate equation from an ab-initio model and find that it is possible to drastically reduce the average occupation number of the vibrational levels.
Our findings provide an alternative cooling scheme that can be applied in principle to any particle.
arXiv Detail & Related papers (2021-07-08T21:24:35Z) - Quantum thermodynamics of coronal heating [77.34726150561087]
convection in the stellar photosphere generates plasma waves by an irreversible process akin to Zeldovich superradiance and sonic booms.
Energy is mostly carried by megahertz Alfven waves that scatter elastically until they reach a height at which they can dissipate via mode conversion.
arXiv Detail & Related papers (2021-03-15T22:27:31Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Ground-State Cooling of Levitated Magnets in Low-Frequency Traps [1.6114012813668934]
We present a ground-state cooling scheme for mesoscopic magnetic particles levitated in low-frequency traps.
Our method makes use of a binary sensor and suitably shaped pulses to perform weak, adaptive measurements on the position of the magnet.
Our results pave the way for ground-state cooling of micron-scale particles.
arXiv Detail & Related papers (2021-02-05T18:47:04Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.