Division polynomials for arbitrary isogenies
- URL: http://arxiv.org/abs/2503.15428v2
- Date: Thu, 17 Apr 2025 19:23:39 GMT
- Title: Division polynomials for arbitrary isogenies
- Authors: Katherine E. Stange,
- Abstract summary: We extend the definition of divisions to arbitrary isogenies of elliptic curves, including those whose kernels do not sum to the identity.<n>In analogy to the case of divisions for multiplication-by-n, we demonstrate relations, identities relating to classical elliptic functions.
- Score: 0.24864093375172572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Following work of Mazur-Tate and Satoh, we extend the definition of division polynomials to arbitrary isogenies of elliptic curves, including those whose kernels do not sum to the identity. In analogy to the classical case of division polynomials for multiplication-by-n, we demonstrate recurrence relations, identities relating to classical elliptic functions, the chain rule describing relationships between division polynomials on source and target curve, and generalizations to higher dimension (i.e., elliptic nets).
Related papers
- Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations.<n>This paper provides a comprehensive and unified understanding of the matrix logarithm and power from a Riemannian geometry perspective.
arXiv Detail & Related papers (2024-07-15T07:11:44Z) - Tensor cumulants for statistical inference on invariant distributions [49.80012009682584]
We show that PCA becomes computationally hard at a critical value of the signal's magnitude.
We define a new set of objects, which provide an explicit, near-orthogonal basis for invariants of a given degree.
It also lets us analyze a new problem of distinguishing between different ensembles.
arXiv Detail & Related papers (2024-04-29T14:33:24Z) - Revisiting Tropical Polynomial Division: Theory, Algorithms and
Application to Neural Networks [40.137069931650444]
Tropical geometry has recently found several applications in the analysis of neural networks with piecewise linear activation functions.
This paper presents a new look at the problem of tropical division and its application to the simplification of neural networks.
arXiv Detail & Related papers (2023-06-27T02:26:07Z) - Spectral quantization of discrete random walks on half-line, and orthogonal polynomials on the unit circle [0.0]
We represent unitary evolution operator of the quantum walk in terms of Verbs on the unit circle.
We show that the both Markovs systems and their measures are connected by the classical SzegHo map.
arXiv Detail & Related papers (2023-06-21T13:41:51Z) - An Exponential Separation Between Quantum Query Complexity and the
Polynomial Degree [79.43134049617873]
In this paper, we demonstrate an exponential separation between exact degree and approximate quantum query for a partial function.
For an alphabet size, we have a constant versus separation complexity.
arXiv Detail & Related papers (2023-01-22T22:08:28Z) - On the general family of third-order shape-invariant Hamiltonians
related to generalized Hermite polynomials [0.0]
This work reports and classifies the most general construction of rational quantum potentials in terms of the generalized Hermites.
It is achieved by exploiting the intrinsic relation between third-order shape-invariant Hamiltonians and the fourth Painlev'e equation.
arXiv Detail & Related papers (2022-03-10T20:45:37Z) - Polynomial decompositions with invariance and positivity inspired by tensors [1.433758865948252]
This framework has been recently introduced for tensor decompositions, in particular for quantum many-body systems.
We define invariant decompositions of structures, approximations, and undecidability to reals.
Our work sheds new light on footings by putting them on an equal footing with tensors, and opens the door to extending this framework to other product structures.
arXiv Detail & Related papers (2021-09-14T13:30:50Z) - Finite-Function-Encoding Quantum States [52.77024349608834]
We introduce finite-function-encoding (FFE) states which encode arbitrary $d$-valued logic functions.
We investigate some of their structural properties.
arXiv Detail & Related papers (2020-12-01T13:53:23Z) - Algebraic Neural Networks: Stability to Deformations [179.55535781816343]
We study algebraic neural networks (AlgNNs) with commutative algebras.
AlgNNs unify diverse architectures such as Euclidean convolutional neural networks, graph neural networks, and group neural networks.
arXiv Detail & Related papers (2020-09-03T03:41:38Z) - Positive maps and trace polynomials from the symmetric group [0.0]
We develop a method to obtain operator inequalities and identities in several variables.
We give connections to concepts in quantum information theory and invariant theory.
arXiv Detail & Related papers (2020-02-28T17:43:37Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z) - Discrete orthogonality relations for multi-indexed Laguerre and Jacobi polynomials [0.0]
We show that they also hold for multi-indexed Laguerre and Jacobis.
We show that they also hold for Krein-Adlers based on the Hermite, Laguerre and Jacobis.
arXiv Detail & Related papers (2019-07-21T10:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.