A discontinuity-capturing neural network with categorical embedding and its application to anisotropic elliptic interface problems
- URL: http://arxiv.org/abs/2503.15441v1
- Date: Wed, 19 Mar 2025 17:21:51 GMT
- Title: A discontinuity-capturing neural network with categorical embedding and its application to anisotropic elliptic interface problems
- Authors: Wei-Fan Hu, Te-Sheng Lin, Ming-Chih Lai,
- Abstract summary: We show that a piecewise smooth function can be approximated by a single neural network with high prediction accuracy.<n>We then leverage the proposed network model to solve anisotropic elliptic interface problems.<n>Our results show that, despite its simple and shallow structure, the proposed neural network model exhibits comparable efficiency and accuracy to traditional grid-based numerical methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a discontinuity-capturing shallow neural network with categorical embedding to represent piecewise smooth functions. The network comprises three hidden layers, a discontinuity-capturing layer, a categorical embedding layer, and a fully-connected layer. Under such a design, we show that a piecewise smooth function, even with a large number of pieces, can be approximated by a single neural network with high prediction accuracy. We then leverage the proposed network model to solve anisotropic elliptic interface problems. The network is trained by minimizing the mean squared error loss of the system. Our results show that, despite its simple and shallow structure, the proposed neural network model exhibits comparable efficiency and accuracy to traditional grid-based numerical methods.
Related papers
- Semantic Loss Functions for Neuro-Symbolic Structured Prediction [74.18322585177832]
We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training.
It is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby.
It can be combined with both discriminative and generative neural models.
arXiv Detail & Related papers (2024-05-12T22:18:25Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - SieveNet: Selecting Point-Based Features for Mesh Networks [41.74190660234404]
Meshes are widely used in 3D computer vision and graphics, but their irregular topology poses challenges in applying them to existing neural network architectures.
Recent advances in mesh neural networks turn to remeshing and push the boundary of pioneer methods that solely take the raw meshes as input.
We propose SieveNet, a novel paradigm that takes into account both the regular topology and the exact geometry.
arXiv Detail & Related papers (2023-08-24T03:40:16Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
This manuscript explores how properties of functions learned by neural networks of depth greater than two layers affect predictions.<n>Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs.
arXiv Detail & Related papers (2023-05-24T22:10:12Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - A cusp-capturing PINN for elliptic interface problems [0.0]
We introduce a cusp-enforced level set function as an additional feature input to the network to retain the inherent solution properties.
The proposed neural network has the advantage of being mesh-free, so it can easily handle problems in irregular domains.
We conduct a series of numerical experiments to demonstrate the effectiveness of the cusp-capturing technique and the accuracy of the present network model.
arXiv Detail & Related papers (2022-10-16T03:05:18Z) - FuNNscope: Visual microscope for interactively exploring the loss
landscape of fully connected neural networks [77.34726150561087]
We show how to explore high-dimensional landscape characteristics of neural networks.
We generalize observations on small neural networks to more complex systems.
An interactive dashboard opens up a number of possible application networks.
arXiv Detail & Related papers (2022-04-09T16:41:53Z) - Exact Solutions of a Deep Linear Network [2.2344764434954256]
This work finds the analytical expression of the global minima of a deep linear network with weight decay and neurons.
We show that weight decay strongly interacts with the model architecture and can create bad minima at zero in a network with more than $1$ hidden layer.
arXiv Detail & Related papers (2022-02-10T00:13:34Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Reduced Order Modeling using Shallow ReLU Networks with Grassmann Layers [0.0]
This paper presents a nonlinear model reduction method for systems of equations using a structured neural network.
We show that our method can be applied to scientific problems in the data-scarce regime, which is typically not well-suited for neural network approximations.
arXiv Detail & Related papers (2020-12-17T21:35:06Z) - Avoiding Spurious Local Minima in Deep Quadratic Networks [0.0]
We characterize the landscape of the mean squared nonlinear error for networks with neural activation functions.
We prove that deepized neural networks with quadratic activations benefit from similar landscape properties.
arXiv Detail & Related papers (2019-12-31T22:31:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.