Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling
- URL: http://arxiv.org/abs/2503.15567v2
- Date: Thu, 03 Apr 2025 04:03:49 GMT
- Title: Towards Unified Latent Space for 3D Molecular Latent Diffusion Modeling
- Authors: Yanchen Luo, Zhiyuan Liu, Yi Zhao, Sihang Li, Kenji Kawaguchi, Tat-Seng Chua, Xiang Wang,
- Abstract summary: 3D molecule generation is crucial for drug discovery and material science.<n>Existing approaches typically maintain separate latent spaces for invariant and equivariant modalities.<n>We propose a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space.
- Score: 80.59215359958934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D molecule generation is crucial for drug discovery and material science, requiring models to process complex multi-modalities, including atom types, chemical bonds, and 3D coordinates. A key challenge is integrating these modalities of different shapes while maintaining SE(3) equivariance for 3D coordinates. To achieve this, existing approaches typically maintain separate latent spaces for invariant and equivariant modalities, reducing efficiency in both training and sampling. In this work, we propose \textbf{U}nified Variational \textbf{A}uto-\textbf{E}ncoder for \textbf{3D} Molecular Latent Diffusion Modeling (\textbf{UAE-3D}), a multi-modal VAE that compresses 3D molecules into latent sequences from a unified latent space, while maintaining near-zero reconstruction error. This unified latent space eliminates the complexities of handling multi-modality and equivariance when performing latent diffusion modeling. We demonstrate this by employing the Diffusion Transformer--a general-purpose diffusion model without any molecular inductive bias--for latent generation. Extensive experiments on GEOM-Drugs and QM9 datasets demonstrate that our method significantly establishes new benchmarks in both \textit{de novo} and conditional 3D molecule generation, achieving leading efficiency and quality.
Related papers
- LMDM:Latent Molecular Diffusion Model For 3D Molecule Generation [6.720821935934759]
We propose a latent molecular diffusion model that can make generated 3D molecules rich in diversity and maintain rich geometric features.<n>The model captures the information of the forces and local constraints between atoms so that the generated molecules can maintain Euclidean transformation.<n>In the experiment, the quality of the samples we generated and the convergence speed of the model have been significantly improved.
arXiv Detail & Related papers (2024-12-05T15:25:18Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) is a novel approach to conditional generation on diffusion models.
It integrates adaptively controlled plug-and-play "online" guidance into a diffusion model, driving samples toward the desired properties.
arXiv Detail & Related papers (2024-11-01T12:59:25Z) - Geometric Trajectory Diffusion Models [58.853975433383326]
Generative models have shown great promise in generating 3D geometric systems.
Existing approaches only operate on static structures, neglecting the fact that physical systems are always dynamic in nature.
We propose geometric trajectory diffusion models (GeoTDM), the first diffusion model for modeling the temporal distribution of 3D geometric trajectories.
arXiv Detail & Related papers (2024-10-16T20:36:41Z) - Geometric Latent Diffusion Models for 3D Molecule Generation [172.15028281732737]
Generative models, especially diffusion models (DMs), have achieved promising results for generating feature-rich geometries.
We propose a novel and principled method for 3D molecule generation named Geometric Latent Diffusion Models (GeoLDM)
arXiv Detail & Related papers (2023-05-02T01:07:22Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - 3D Equivariant Diffusion for Target-Aware Molecule Generation and
Affinity Prediction [9.67574543046801]
The inclusion of 3D structures during targeted drug design shows superior performance to other target-free models.
We develop a 3D equivariant diffusion model to solve the above challenges.
Our model could generate molecules with more realistic 3D structures and better affinities towards the protein targets, and improve binding affinity ranking and prediction without retraining.
arXiv Detail & Related papers (2023-03-06T23:01:43Z) - MDM: Molecular Diffusion Model for 3D Molecule Generation [19.386468094571725]
Existing diffusion-based 3D molecule generation methods could suffer from unsatisfactory performances.
Interatomic relations are not in molecules' 3D point cloud representations.
Proposed model significantly outperforms existing methods for both unconditional and conditional generation tasks.
arXiv Detail & Related papers (2022-09-13T03:40:18Z) - Equivariant Diffusion for Molecule Generation in 3D [74.289191525633]
This work introduces a diffusion model for molecule computation generation in 3D that is equivariant to Euclidean transformations.
Experimentally, the proposed method significantly outperforms previous 3D molecular generative methods regarding the quality of generated samples and efficiency at training time.
arXiv Detail & Related papers (2022-03-31T12:52:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.