Graph-Weighted Contrastive Learning for Semi-Supervised Hyperspectral Image Classification
- URL: http://arxiv.org/abs/2503.15731v1
- Date: Wed, 19 Mar 2025 22:55:52 GMT
- Title: Graph-Weighted Contrastive Learning for Semi-Supervised Hyperspectral Image Classification
- Authors: Yuqing Zhang, Qi Han, Ligeng Wang, Kai Cheng, Bo Wang, Kun Zhan,
- Abstract summary: We propose a graph-weighted contrastive learning approach that avoids the use of superpixel partitioning and directly employs neural networks to learn hyperspectral image representation.<n>Our approach supports mini-batch training by processing only a subset of nodes at a time, reducing computational complexity and improving generalization to unseen nodes.
- Score: 9.640130509216629
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most existing graph-based semi-supervised hyperspectral image classification methods rely on superpixel partitioning techniques. However, they suffer from misclassification of certain pixels due to inaccuracies in superpixel boundaries, \ie, the initial inaccuracies in superpixel partitioning limit overall classification performance. In this paper, we propose a novel graph-weighted contrastive learning approach that avoids the use of superpixel partitioning and directly employs neural networks to learn hyperspectral image representation. Furthermore, while many approaches require all graph nodes to be available during training, our approach supports mini-batch training by processing only a subset of nodes at a time, reducing computational complexity and improving generalization to unseen nodes. Experimental results on three widely-used datasets demonstrate the effectiveness of the proposed approach compared to baselines relying on superpixel partitioning.
Related papers
- Hierarchical Superpixel Segmentation via Structural Information Theory [48.488598357738674]
Superpixel segmentation is a foundation for many higher-level computer vision tasks.<n>We present SIT-HSS, a hierarchical superpixel segmentation method based on structural information theory.<n>We show that SIT-HSS performs better than state-of-the-art unsupervised superpixel segmentation algorithms.
arXiv Detail & Related papers (2025-01-13T05:39:43Z) - Exploring Multi-view Pixel Contrast for General and Robust Image Forgery Localization [4.8454936010479335]
We propose a Multi-view Pixel-wise Contrastive algorithm (MPC) for image forgery localization.
Specifically, we first pre-train the backbone network with the supervised contrastive loss.
Then the localization head is fine-tuned using the cross-entropy loss, resulting in a better pixel localizer.
arXiv Detail & Related papers (2024-06-19T13:51:52Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
We present a pixel-level clustering framework for segmenting images into regions without using ground truth annotations.
We also propose a training strategy that utilizes intra-consistency within each superpixel, inter-similarity/dissimilarity between neighboring superpixels, and structural similarity between images.
arXiv Detail & Related papers (2023-10-24T23:06:29Z) - Superpixel Semantics Representation and Pre-training for Vision-Language Task [11.029236633301222]
coarse-grained semantic interactions in image space should not be ignored.
This paper proposes superpixels as comprehensive and robust visual primitives.
It allows parsing the entire image as a fine-to-coarse visual hierarchy.
arXiv Detail & Related papers (2023-10-20T12:26:04Z) - Pixel Relationships-based Regularizer for Retinal Vessel Image
Segmentation [4.3251090426112695]
This study presents regularizers to give the pixel neighbor relationship information to the learning process.
Experiments show that our scheme successfully captures pixel neighbor relations and improves the performance of the convolutional neural network.
arXiv Detail & Related papers (2022-12-28T07:35:20Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
This paper proposes a probabilistic deep metric learning framework for hyperspectral image classification.
It aims to predict the category of each pixel for an image captured by hyperspectral sensors.
Our framework can be readily applied to existing hyperspectral image classification methods.
arXiv Detail & Related papers (2022-11-15T17:57:12Z) - Adaptive Fusion Affinity Graph with Noise-free Online Low-rank
Representation for Natural Image Segmentation [3.7189024338041836]
We propose an adaptive affinity fusion graph (AFA-graph) with noise-free low-rank representation in an online manner for natural image segmentation.
Experimental results on the BSD300, BSD500, MSRC, and PASCAL VOC show the effectiveness of AFA-graph in comparison with state-of-the-art approaches.
arXiv Detail & Related papers (2021-10-22T10:15:27Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
We propose a mixed supervision learning framework for super high-resolution images.
During the patch training stage, this framework can make use of coarse image-level labels to refine self-supervised learning.
A comprehensive strategy is proposed to suppress pixel-level false positives and false negatives.
arXiv Detail & Related papers (2021-07-02T09:46:06Z) - Semi-supervised Hyperspectral Image Classification with Graph Clustering
Convolutional Networks [41.78245271989529]
We propose a graph convolution network (GCN) based framework for HSI classification.
In particular, we first cluster the pixels with similar spectral features into a superpixel and build the graph based on the superpixels of the input HSI.
We then partition it into several sub-graphs by pruning the edges with weak weights, so as to strengthen the correlations of nodes with high similarity.
arXiv Detail & Related papers (2020-12-20T14:16:59Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
We consider each representative region with independent semantic information as a subspace, and formulate superpixel segmentation as a subspace clustering problem.
We show that a simple integration of superpixel segmentation with the conventional subspace clustering does not effectively work due to the spatial correlation of the pixels.
We propose a novel convex locality-constrained subspace clustering model that is able to constrain the spatial adjacent pixels with similar attributes to be clustered into a superpixel.
arXiv Detail & Related papers (2020-12-11T06:18:36Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
The lack of sharp boundaries in US images remains an inherent challenge for segmentation.
We propose a novel and effective framework to improve boundary estimation in US images.
Our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.
arXiv Detail & Related papers (2020-10-10T07:14:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.