Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
- URL: http://arxiv.org/abs/2503.15783v1
- Date: Thu, 20 Mar 2025 01:47:33 GMT
- Title: Grammar and Gameplay-aligned RL for Game Description Generation with LLMs
- Authors: Tsunehiko Tanaka, Edgar Simo-Serra,
- Abstract summary: Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text.<n>We propose reinforcement learning-based fine-tuning of Large Language Models (LLMs) for GDG (RLGDG)<n>Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards.
- Score: 12.329521804287259
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Game Description Generation (GDG) is the task of generating a game description written in a Game Description Language (GDL) from natural language text. Previous studies have explored generation methods leveraging the contextual understanding capabilities of Large Language Models (LLMs); however, accurately reproducing the game features of the game descriptions remains a challenge. In this paper, we propose reinforcement learning-based fine-tuning of LLMs for GDG (RLGDG). Our training method simultaneously improves grammatical correctness and fidelity to game concepts by introducing both grammar rewards and concept rewards. Furthermore, we adopt a two-stage training strategy where Reinforcement Learning (RL) is applied following Supervised Fine-Tuning (SFT). Experimental results demonstrate that our proposed method significantly outperforms baseline methods using SFT alone.
Related papers
- SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Grammar-based Game Description Generation using Large Language Models [12.329521804287259]
Game Description Language (GDL) provides a standardized way to express diverse games in a machine-readable format.<n>This paper presents a novel framework that leverages Large Language Models (LLMs) to generate grammatically accurate game descriptions from natural language.
arXiv Detail & Related papers (2024-07-24T16:36:02Z) - Enhancing Commentary Strategies for Imperfect Information Card Games: A Study of Large Language Models in Guandan Commentary [5.1244906826828736]
We introduce a novel commentary method that combine Reinforcement Learning (RL) and large language models (LLMs)
Our system leverages RL to generate intricate card-playing scenarios and employs LLMs to generate corresponding commentary text.
We showcase the substantial enhancement in performance achieved by the proposed commentary framework when applied to open-source LLMs.
arXiv Detail & Related papers (2024-06-23T11:58:26Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - Large Language Models as Agents in Two-Player Games [12.303405412105187]
This paper delineates the parallels between the training methods of large language models (LLMs) and the strategies employed for the development of agents in two-player games.
We propose a re-conceptualization of LLM learning processes in terms of agent learning in language-based games.
arXiv Detail & Related papers (2024-02-12T21:44:32Z) - Language Model-In-The-Loop: Data Optimal Approach to Learn-To-Recommend
Actions in Text Games [16.281640651021434]
Large Language Models (LLMs) have demonstrated superior performance in language understanding benchmarks.
LLMs leverage linguistic priors of LLMs -- GPT-2 -- for action candidate recommendations to improve the performance in text games.
CalM adapts GPT-2 with annotated human gameplays and keeps the LLM fixed during the learning of the text based games.
arXiv Detail & Related papers (2023-11-13T19:12:49Z) - Leveraging Word Guessing Games to Assess the Intelligence of Large
Language Models [105.39236338147715]
The paper is inspired by the popular language game Who is Spy''
We develop DEEP to evaluate LLMs' expression and disguising abilities.
We then introduce SpyGame, an interactive multi-agent framework.
arXiv Detail & Related papers (2023-10-31T14:37:42Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.