Video-VoT-R1: An efficient video inference model integrating image packing and AoE architecture
- URL: http://arxiv.org/abs/2503.15807v1
- Date: Thu, 20 Mar 2025 02:50:57 GMT
- Title: Video-VoT-R1: An efficient video inference model integrating image packing and AoE architecture
- Authors: Cheng Li, Jiexiong Liu, Yixuan Chen, Yanqin Jia,
- Abstract summary: This paper proposes a KunLunBaize-VoT-R1 video inference model based on a long-sequence image encoder, along with its training and application methods.<n> Experiments show that this model performs outstandingly in multiple tests, providing a new solution for video-language understanding.
- Score: 3.850138059878136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of video-language pretraining, existing models face numerous challenges in terms of inference efficiency and multimodal data processing. This paper proposes a KunLunBaize-VoT-R1 video inference model based on a long-sequence image encoder, along with its training and application methods. By integrating image packing technology, the Autonomy-of-Experts (AoE) architecture, and combining the video of Thought (VoT), a large language model (LLM) trained with large-scale reinforcement learning, and multiple training techniques, the efficiency and accuracy of the model in video inference tasks are effectively improved. Experiments show that this model performs outstandingly in multiple tests, providing a new solution for video-language understanding.
Related papers
- SNED: Superposition Network Architecture Search for Efficient Video Diffusion Model [41.825824810180215]
This paper presents SNED, a superposition network architecture search method for efficient video diffusion model.
Our method employs a supernet training paradigm that targets various model cost and resolution options.
Our framework consistently produces comparable results across different model options with high efficiency.
arXiv Detail & Related papers (2024-05-31T21:12:30Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2 is a new family of video foundation models (FM) that achieve state-of-the-art results in video recognition, video-speech tasks, and video-centric tasks.
Our core design is a progressive training approach that unifies the masked video modeling, cross contrastive learning, and prediction token, scaling up to 6B video size.
arXiv Detail & Related papers (2024-03-22T17:57:42Z) - Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - E-ViLM: Efficient Video-Language Model via Masked Video Modeling with
Semantic Vector-Quantized Tokenizer [5.7254320553764]
E-ViLM is able to learn expressive representations from Video-Language corpus and generalize well to extensive Video-Language tasks.
Our model reaches $39.3$% Top-$1$ accuracy on the MSRVTT benchmark, retaining $91.4$% of the accuracy of state-of-the-art larger VL architecture.
arXiv Detail & Related papers (2023-11-28T22:57:17Z) - Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets [36.95521842177614]
We present Stable Video Diffusion - a latent video diffusion model for high-resolution, state-of-the-art text-to-video and image-to-video generation.
We identify and evaluate three different stages for successful training of video LDMs: text-to-image pretraining, video pretraining, and high-quality video finetuning.
arXiv Detail & Related papers (2023-11-25T22:28:38Z) - Video-Teller: Enhancing Cross-Modal Generation with Fusion and
Decoupling [79.49128866877922]
Video-Teller is a video-language foundation model that leverages multi-modal fusion and fine-grained modality alignment.
Video-Teller boosts the training efficiency by utilizing frozen pretrained vision and language modules.
It capitalizes on the robust linguistic capabilities of large language models, enabling the generation of both concise and elaborate video descriptions.
arXiv Detail & Related papers (2023-10-08T03:35:27Z) - VLAB: Enhancing Video Language Pre-training by Feature Adapting and
Blending [78.1399386935455]
Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations.
We propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature generativearity and Blending.
VLAB transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks.
arXiv Detail & Related papers (2023-05-22T15:54:22Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
We propose a decoder-only model for multimodal tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
We demonstrate that joint learning of these diverse objectives is simple, effective, and maximizes the weight-sharing of the model across these tasks.
Our model achieves the state of the art on image-text and text-image retrieval, video question answering and open-vocabulary detection tasks, outperforming much larger and more extensively trained foundational models.
arXiv Detail & Related papers (2023-03-29T16:42:30Z) - Frozen CLIP Models are Efficient Video Learners [86.73871814176795]
Video recognition has been dominated by the end-to-end learning paradigm.
Recent advances in Contrastive Vision-Language Pre-training pave the way for a new route for visual recognition tasks.
We present Efficient Video Learning -- an efficient framework for directly training high-quality video recognition models.
arXiv Detail & Related papers (2022-08-06T17:38:25Z) - UniVL: A Unified Video and Language Pre-Training Model for Multimodal
Understanding and Generation [76.12027504427708]
This paper proposes UniVL: a Unified Video and Language pre-training model for both multimodal understanding and generation.
It comprises four components, including two single-modal encoders, a cross encoder, and a decoder with the Transformer backbone.
We develop two pre-training strategies, stage by stage pre-training (StagedP) and enhanced video representation (EnhancedV) to make the training process of the UniVL more effective.
arXiv Detail & Related papers (2020-02-15T10:03:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.