Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection
- URL: http://arxiv.org/abs/2503.15818v2
- Date: Sun, 23 Mar 2025 19:45:16 GMT
- Title: Computation-Efficient and Recognition-Friendly 3D Point Cloud Privacy Protection
- Authors: Haotian Ma, Lin Gu, Siyi Wu, Yingying Zhu,
- Abstract summary: 3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc.<n>To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well.<n>We defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM.
- Score: 9.39435565572843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D point cloud has been widely used in applications such as self-driving cars, robotics, CAD models, etc. To the best of our knowledge, these applications raised the issue of privacy leakage in 3D point clouds, which has not been studied well. Different from the 2D image privacy, which is related to texture and 2D geometric structure, the 3D point cloud is texture-less and only relevant to 3D geometric structure. In this work, we defined the 3D point cloud privacy problem and proposed an efficient privacy-preserving framework named PointFlowGMM that can support downstream classification and segmentation tasks without seeing the original data. Using a flow-based generative model, the point cloud is projected into a latent Gaussian mixture distributed subspace. We further designed a novel angular similarity loss to obfuscate the original geometric structure and reduce the model size from 767MB to 120MB without a decrease in recognition performance. The projected point cloud in the latent space is orthogonally rotated randomly to further protect the original geometric structure, the class-to-class relationship is preserved after rotation, thus, the protected point cloud can support the recognition task. We evaluated our model on multiple datasets and achieved comparable recognition results on encrypted point clouds compared to the original point clouds.
Related papers
- Patch-Wise Point Cloud Generation: A Divide-and-Conquer Approach [83.05340155068721]
We devise a new 3d point cloud generation framework using a divide-and-conquer approach.
All patch generators are based on learnable priors, which aim to capture the information of geometry primitives.
Experimental results on a variety of object categories from the most popular point cloud dataset, ShapeNet, show the effectiveness of the proposed patch-wise point cloud generation.
arXiv Detail & Related papers (2023-07-22T11:10:39Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - Shrinking unit: a Graph Convolution-Based Unit for CNN-like 3D Point
Cloud Feature Extractors [0.0]
We argue that a lack of inspiration from the image domain might be the primary cause of such a gap.
We propose a graph convolution-based unit, dubbed Shrinking unit, that can be stacked vertically and horizontally for the design of CNN-like 3D point cloud feature extractors.
arXiv Detail & Related papers (2022-09-26T15:28:31Z) - GRASP-Net: Geometric Residual Analysis and Synthesis for Point Cloud
Compression [16.98171403698783]
We propose a heterogeneous approach with deep learning for lossy point cloud geometry compression.
Specifically, a point-based network is applied to convert the erratic local details to latent features residing on the coarse point cloud.
arXiv Detail & Related papers (2022-09-09T17:09:02Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z) - ShapeAdv: Generating Shape-Aware Adversarial 3D Point Clouds [78.25501874120489]
We develop shape-aware adversarial 3D point cloud attacks by leveraging the learned latent space of a point cloud auto-encoder.
Different from prior works, the resulting adversarial 3D point clouds reflect the shape variations in the 3D point cloud space while still being close to the original one.
arXiv Detail & Related papers (2020-05-24T00:03:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.