Reducing T Gates with Unitary Synthesis
- URL: http://arxiv.org/abs/2503.15843v1
- Date: Thu, 20 Mar 2025 04:53:54 GMT
- Title: Reducing T Gates with Unitary Synthesis
- Authors: Tianyi Hao, Amanda Xu, Swamit Tannu,
- Abstract summary: This work presents a novel FT synthesis algorithm that directly synthesizes arbitrary single-qubit unitaries.<n>By leveraging tensor network-based search, our approach enables native $U3$ synthesis, reducing the $T$ count, Clifford gate count, and approximation error.
- Score: 0.41873449350124814
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error correction is essential for achieving practical quantum computing but has a significant computational overhead. Among fault-tolerant (FT) gate operations, non-Clifford gates, such as $T$, are particularly expensive due to their reliance on magic state distillation. These costly $T$ gates appear frequently in FT circuits as many quantum algorithms require arbitrary single-qubit rotations, such as $R_x$ and $R_z$ gates, which must be decomposed into a sequence of $T$ and Clifford gates. In many quantum circuits, $R_x$ and $R_z$ gates can be fused to form a single $U3$ unitary. However, existing synthesis methods, such as gridsynth, rely on indirect decompositions, requiring separate $R_z$ decompositions that result in a threefold increase in $T$ count. This work presents a novel FT synthesis algorithm that directly synthesizes arbitrary single-qubit unitaries, avoiding the overhead of separate $R_z$ decompositions. By leveraging tensor network-based search, our approach enables native $U3$ synthesis, reducing the $T$ count, Clifford gate count, and approximation error. Compared to gridsynth-based circuit synthesis, for 187 representative benchmarks, our design reduces the $T$ count by up to $3.5\times$, and Clifford gates by $7\times$, resulting in up to $4\times$ improvement in overall circuit infidelity.
Related papers
- Bridging wire and gate cutting with ZX-calculus [45.200826131319815]
We show how decompositions of ideal, global unitaries can be obtained diagrammatically using ZX-calculus expanding.
We obtain improved decompositions for multi-qubit controlled-Z (MCZ) gates with $1$-norm equal to $3$ for any number of qubits and any partition.
arXiv Detail & Related papers (2025-03-14T15:20:47Z) - Optimized circuits for windowed modular arithmetic with applications to quantum attacks against RSA [45.810803542748495]
Windowed arithmetic is a technique for reducing the cost of quantum circuits with space--time tradeoffs.<n>In this work we introduce four optimizations to windowed modular exponentiation.<n>This leads to a $3%$ improvement in Toffoli count and Toffoli depth for modular exponentiation circuits relevant to cryptographic applications.
arXiv Detail & Related papers (2025-02-24T16:59:16Z) - Entanglement-assisted Quantum Error Correcting Code Saturating The Classical Singleton Bound [44.154181086513574]
We introduce a construction for entanglement-assisted quantum error-correcting codes (EAQECCs) that saturates the classical Singleton bound with less shared entanglement than any known method for code rates below $ frackn = frac13 $.
We demonstrate that any classical $[n,k,d]_q$ code can be transformed into an EAQECC with parameters $[n,k,d;2k]]_q$ using $2k$ pre-shared maximally entangled pairs.
arXiv Detail & Related papers (2024-10-05T11:56:15Z) - Minimum Synthesis Cost of CNOT Circuits [0.0]
We use a novel method of categorizing CNOT gates in a synthesis to obtain a strict lower bound computable in $O(nomega)$ time.
Applying our framework, we prove that $3(n-1)$ gate syntheses of the $n$-cycle circuit are optimal and provide insight into their structure.
arXiv Detail & Related papers (2024-08-15T03:09:53Z) - Lower $T$-count with faster algorithms [3.129187821625805]
We contribute to the $T$-count reduction problem by proposing efficient $T$-counts with low execution times.
We greatly improve the complexity of TODD, an algorithm currently providing the best $T$-count reduction on various quantum circuits.
We propose another algorithm which has an even lower complexity and that achieves a better or equal $T$-count than the state of the art on most quantum circuits evaluated.
arXiv Detail & Related papers (2024-07-11T17:31:20Z) - Hamiltonian simulation for low-energy states with optimal time dependence [45.02537589779136]
We consider the task of simulating time evolution under a Hamiltonian $H$ within its low-energy subspace.
We present a quantum algorithm that uses $O(tsqrtlambdaGamma + sqrtlambda/Gammalog (1/epsilon))$ queries to the block-encoding for any $Gamma$.
arXiv Detail & Related papers (2024-04-04T17:58:01Z) - Optimal Hadamard gate count for Clifford$+T$ synthesis of Pauli
rotations sequences [4.423586186569902]
We propose an algorithm for synthesizing a sequence of $pi/4$ Pauli rotations with a minimal number of Hadamard gates.
We present an algorithm which optimally minimizes the number of Hadamard gates lying between the first and the last $T$ gate of the circuit.
arXiv Detail & Related papers (2023-02-14T13:44:11Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Cost-optimal single-qubit gate synthesis in the Clifford hierarchy [0.0]
A synthesis algorithm can be used to approximate any unitary gate up to arbitrary precision.
Current procedures do not yet support individual assignment of base gate costs.
arXiv Detail & Related papers (2020-05-12T07:21:12Z) - Demonstrating a Continuous Set of Two-qubit Gates for Near-term Quantum
Algorithms [1.9240845160743125]
We demonstrate a continuous two-qubit gate set that can provide a 3x reduction in circuit depth as compared to a standard decomposition.
We benchmark the fidelity of the iSWAP-like and CPHASE gate families as well as 525 other fSim gates spread evenly across the entire fSim parameter space.
arXiv Detail & Related papers (2020-01-23T02:12:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.