UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation
- URL: http://arxiv.org/abs/2503.15940v1
- Date: Thu, 20 Mar 2025 08:28:53 GMT
- Title: UniCrossAdapter: Multimodal Adaptation of CLIP for Radiology Report Generation
- Authors: Yaxiong Chen, Chuang Du, Chunlei Li, Jingliang Hu, Yilei Shi, Shengwu Xiong, Xiao Xiang Zhu, Lichao Mou,
- Abstract summary: We propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts.<n>To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task.
- Score: 31.72930277939111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated radiology report generation aims to expedite the tedious and error-prone reporting process for radiologists. While recent works have made progress, learning to align medical images and textual findings remains challenging due to the relative scarcity of labeled medical data. For example, datasets for this task are much smaller than those used for image captioning in computer vision. In this work, we propose to transfer representations from CLIP, a large-scale pre-trained vision-language model, to better capture cross-modal semantics between images and texts. However, directly applying CLIP is suboptimal due to the domain gap between natural images and radiology. To enable efficient adaptation, we introduce UniCrossAdapter, lightweight adapter modules that are incorporated into CLIP and fine-tuned on the target task while keeping base parameters fixed. The adapters are distributed across modalities and their interaction to enhance vision-language alignment. Experiments on two public datasets demonstrate the effectiveness of our approach, advancing state-of-the-art in radiology report generation. The proposed transfer learning framework provides a means of harnessing semantic knowledge from large-scale pre-trained models to tackle data-scarce medical vision-language tasks. Code is available at https://github.com/chauncey-tow/MRG-CLIP.
Related papers
- CLIP-IT: CLIP-based Pairing for Histology Images Classification [6.855390956571216]
We introduce CLIP-IT to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source.
At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset.
A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities.
arXiv Detail & Related papers (2025-04-22T18:14:43Z) - Freeze the backbones: A Parameter-Efficient Contrastive Approach to
Robust Medical Vision-Language Pre-training [15.790435273150083]
We introduce the backbone-agnostic Adaptor framework, which preserves medical knowledge in pre-trained image and text encoders by keeping them frozen.
Our framework delivers competitive performance while cutting trainable parameters by over 90% compared to current pre-training approaches.
arXiv Detail & Related papers (2024-01-02T12:14:41Z) - RaDialog: A Large Vision-Language Model for Radiology Report Generation
and Conversational Assistance [53.20640629352422]
Conversational AI tools can generate and discuss clinically correct radiology reports for a given medical image.
RaDialog is the first thoroughly evaluated and publicly available large vision-language model for radiology report generation and interactive dialog.
Our method achieves state-of-the-art clinical correctness in report generation and shows impressive abilities in interactive tasks such as correcting reports and answering questions.
arXiv Detail & Related papers (2023-11-30T16:28:40Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - XrayGPT: Chest Radiographs Summarization using Medical Vision-Language
Models [60.437091462613544]
We introduce XrayGPT, a novel conversational medical vision-language model.
It can analyze and answer open-ended questions about chest radiographs.
We generate 217k interactive and high-quality summaries from free-text radiology reports.
arXiv Detail & Related papers (2023-06-13T17:59:59Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
This paper explores training medical vision-language models (VLMs) where the visual and language inputs are embedded into a common space.
We explore several candidate methods to improve low-data performance, including adapting generic pre-trained models to novel image and text domains.
Using text-to-image retrieval as a benchmark, we evaluate the performance of these methods with variable sized training datasets of paired chest X-rays and radiological reports.
arXiv Detail & Related papers (2023-03-30T18:20:00Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - A Medical Semantic-Assisted Transformer for Radiographic Report
Generation [39.99216295697047]
We propose a memory-augmented sparse attention block to capture the higher-order interactions between the input fine-grained image features.
We also introduce a novel Medical Concepts Generation Network (MCGN) to predict fine-grained semantic concepts and incorporate them into the report generation process as guidance.
arXiv Detail & Related papers (2022-08-22T14:38:19Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Cross-modal Memory Networks for Radiology Report Generation [30.13916304931662]
Cross-modal memory networks (CMN) are proposed to enhance the encoder-decoder framework for radiology report generation.
Our model is able to better align information from radiology images and texts so as to help generating more accurate reports in terms of clinical indicators.
arXiv Detail & Related papers (2022-04-28T02:32:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.