A Survey on fMRI-based Brain Decoding for Reconstructing Multimodal Stimuli
- URL: http://arxiv.org/abs/2503.15978v1
- Date: Thu, 20 Mar 2025 09:23:07 GMT
- Title: A Survey on fMRI-based Brain Decoding for Reconstructing Multimodal Stimuli
- Authors: Pengyu Liu, Guohua Dong, Dan Guo, Kun Li, Fengling Li, Xun Yang, Meng Wang, Xiaomin Ying,
- Abstract summary: Decoding brain signals to reconstruct stimuli drives progress in AI, disease treatment, and brain-computer interfaces.<n>Recent advancements in neuroimaging and image generation models have significantly improved fMRI-based decoding.<n>This survey systematically reviews recent progress in fMRI-based brain decoding, focusing on stimulus reconstruction from passive brain signals.
- Score: 26.07986165893441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In daily life, we encounter diverse external stimuli, such as images, sounds, and videos. As research in multimodal stimuli and neuroscience advances, fMRI-based brain decoding has become a key tool for understanding brain perception and its complex cognitive processes. Decoding brain signals to reconstruct stimuli not only reveals intricate neural mechanisms but also drives progress in AI, disease treatment, and brain-computer interfaces. Recent advancements in neuroimaging and image generation models have significantly improved fMRI-based decoding. While fMRI offers high spatial resolution for precise brain activity mapping, its low temporal resolution and signal noise pose challenges. Meanwhile, techniques like GANs, VAEs, and Diffusion Models have enhanced reconstructed image quality, and multimodal pre-trained models have boosted cross-modal decoding tasks. This survey systematically reviews recent progress in fMRI-based brain decoding, focusing on stimulus reconstruction from passive brain signals. It summarizes datasets, relevant brain regions, and categorizes existing methods by model structure. Additionally, it evaluates model performance and discusses their effectiveness. Finally, it identifies key challenges and proposes future research directions, offering valuable insights for the field. For more information and resources related to this survey, visit https://github.com/LpyNow/BrainDecodingImage.
Related papers
- MindAligner: Explicit Brain Functional Alignment for Cross-Subject Visual Decoding from Limited fMRI Data [64.92867794764247]
MindAligner is a framework for cross-subject brain decoding from limited fMRI data.<n>Brain Transfer Matrix (BTM) projects the brain signals of an arbitrary new subject to one of the known subjects.<n>Brain Functional Alignment module is proposed to perform soft cross-subject brain alignment under different visual stimuli.
arXiv Detail & Related papers (2025-02-07T16:01:59Z) - BrainSegFounder: Towards 3D Foundation Models for Neuroimage Segmentation [6.5388528484686885]
This study introduces a novel approach towards the creation of medical foundation models.
Our method involves a novel two-stage pretraining approach using vision transformers.
BrainFounder demonstrates a significant performance gain, surpassing the achievements of previous winning solutions.
arXiv Detail & Related papers (2024-06-14T19:49:45Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Brain3D: Generating 3D Objects from fMRI [76.41771117405973]
We design a novel 3D object representation learning method, Brain3D, that takes as input the fMRI data of a subject.
We show that our model captures the distinct functionalities of each region of human vision system.
Preliminary evaluations indicate that Brain3D can successfully identify the disordered brain regions in simulated scenarios.
arXiv Detail & Related papers (2024-05-24T06:06:11Z) - BrainODE: Dynamic Brain Signal Analysis via Graph-Aided Neural Ordinary Differential Equations [67.79256149583108]
We propose a novel model called BrainODE to achieve continuous modeling of dynamic brain signals.
By learning latent initial values and neural ODE functions from irregular time series, BrainODE effectively reconstructs brain signals at any time point.
arXiv Detail & Related papers (2024-04-30T10:53:30Z) - MindBridge: A Cross-Subject Brain Decoding Framework [60.58552697067837]
Brain decoding aims to reconstruct stimuli from acquired brain signals.
Currently, brain decoding is confined to a per-subject-per-model paradigm.
We present MindBridge, that achieves cross-subject brain decoding by employing only one model.
arXiv Detail & Related papers (2024-04-11T15:46:42Z) - NeuroCine: Decoding Vivid Video Sequences from Human Brain Activties [23.893490180665996]
We introduce NeuroCine, a novel dual-phase framework to targeting the inherent challenges of decoding fMRI data.
tested on a publicly available fMRI dataset, our method shows promising results.
Our attention analysis suggests that the model aligns with existing brain structures and functions, indicating its biological plausibility and interpretability.
arXiv Detail & Related papers (2024-02-02T17:34:25Z) - Brainformer: Mimic Human Visual Brain Functions to Machine Vision Models via fMRI [12.203617776046169]
We introduce a novel framework named Brainformer to analyze fMRI patterns in the human perception system.
This work introduces a prospective approach to transferring knowledge from human perception to neural networks.
arXiv Detail & Related papers (2023-11-30T22:39:23Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Contrast, Attend and Diffuse to Decode High-Resolution Images from Brain
Activities [31.448924808940284]
We introduce a two-phase fMRI representation learning framework.
The first phase pre-trains an fMRI feature learner with a proposed Double-contrastive Mask Auto-encoder to learn denoised representations.
The second phase tunes the feature learner to attend to neural activation patterns most informative for visual reconstruction with guidance from an image auto-encoder.
arXiv Detail & Related papers (2023-05-26T19:16:23Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - Explainable fMRI-based Brain Decoding via Spatial Temporal-pyramid Graph
Convolutional Network [0.8399688944263843]
Existing machine learning methods for fMRI-based brain decoding either suffer from low classification performance or poor explainability.
We propose a biologically inspired architecture, Spatial Temporal-pyramid Graph Convolutional Network (STpGCN), to capture the spatial-temporal graph representation of functional brain activities.
We conduct extensive experiments on fMRI data under 23 cognitive tasks from Human Connectome Project (HCP) S1200.
arXiv Detail & Related papers (2022-10-08T12:14:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.