Non-Markovian Relaxation Spectroscopy of Fluxonium Qubits
- URL: http://arxiv.org/abs/2503.16381v1
- Date: Thu, 20 Mar 2025 17:43:56 GMT
- Title: Non-Markovian Relaxation Spectroscopy of Fluxonium Qubits
- Authors: Ze-Tong Zhuang, Dario Rosenstock, Bao-Jie Liu, Aaron Somoroff, Vladimir E. Manucharyan, Chen Wang,
- Abstract summary: parasitic two-level systems (TLS) in superconducting qubits can have relaxation times longer than the qubits themselves.<n>We introduce two-timescale relaxometry, a technique to probe the qubit and environment relaxation simultaneously and efficiently.
- Score: 2.5586221134859426
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent studies have shown that parasitic two-level systems (TLS) in superconducting qubits, which are a leading source of decoherence, can have relaxation times longer than the qubits themselves. However, the standard techniques used to characterize qubit relaxation is only valid for measuring $T_1$ under Markovian assumptions and could mask such non-Markovian behavior of the environment in practice. Here, we introduce two-timescale relaxometry, a technique to probe the qubit and environment relaxation simultaneously and efficiently. We apply it to high-coherence fluxonium qubits over a frequency range of 0.1-0.4 GHz, which reveals a discrete spectrum of TLS with millisecond lifetimes. Our analysis of the spectrum is consistent with a random distribution of TLS in the aluminum oxide tunnel barrier of the Josephson junction chain of the fluxonium with an average density and electric dipole similar to previous TLS studies at much higher frequencies. Our study suggests that investigating and mitigating TLS in the junction chain is crucial to the development of various types of noise-protected qubits in circuit QED.
Related papers
- Evaluating radiation impact on transmon qubits in above and underground facilities [52.89046593457984]
We compare the response of a transmon qubit measured initially at the Fermilab SQMS above-ground facilities and then at the deep underground Gran Sasso Laboratory (INFN-LNGS, Italy)
Results indicate that qubits respond to a strong gamma source and it is possible to detect particle impacts.
arXiv Detail & Related papers (2024-05-28T16:54:45Z) - Two-tone spectroscopy for the detection of two-level systems in superconducting qubits [108.40985826142428]
Two-level systems (TLS) of unclear physical origin are a major contributor to decoherence in superconducting qubits.
We propose a novel method that requires only a microwave drive and dispersive readout, and thus also works fixed-frequency qubits.
arXiv Detail & Related papers (2024-04-22T09:53:00Z) - Phonon engineering of atomic-scale defects in superconducting quantum
circuits [5.596598303356484]
tunneling two-level systems (TLS) have taken on further relevance in the field of quantum computing.
We take a new approach that seeks to directly modify the properties of TLS through nanoscale-engineering.
Our work paves the way for in-depth investigation and coherent control of TLS.
arXiv Detail & Related papers (2023-10-05T22:17:09Z) - Solomon equations for qubit and two-level systems: Insights into non-Poissonian quantum jumps [41.94295877935867]
We measure and model the combined relaxation of a qubit coupled to a discrete two-level system(TLS) environment.
If the TLSs are much longer-lived than the qubit, non-exponential relaxation and non-Poissonian quantum jumps can be observed.
arXiv Detail & Related papers (2023-07-13T16:51:29Z) - Qubit dephasing by spectrally diffusing quantum two-level systems [44.99833362998488]
We investigate the pure dephasing of a Josephson qubit due to the spectral diffusion of two-level systems that are close to resonance with the qubit.
We show that this pure dephasing mechanism can be mitigated, allowing enhancement of superconducting qubits coherence time.
arXiv Detail & Related papers (2023-06-27T07:48:42Z) - TLS Dynamics in a Superconducting Qubit Due to Background Ionizing
Radiation [0.0]
Two-level systems (TLSs) destabilize qubit lifetimes on hour timescales.
Identical radiation has recently been found to cause bursts of correlated multi-qubit decays, complicating quantum error correction.
We study both ionizing radiation and TLS dynamics on a 27-qubit processor.
arXiv Detail & Related papers (2022-10-10T15:37:34Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Experimentally revealing anomalously large dipoles in a quantum-circuit
dielectric [50.591267188664666]
Two-level systems (TLSs) intrinsic to glasses induce decoherence in many modern quantum devices.
We show the existence of two distinct ensembles of TLSs, interacting weakly and strongly with phonons.
Results may shed new light on the low temperature characteristics of amorphous solids.
arXiv Detail & Related papers (2021-10-20T19:42:22Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z) - Interacting Defects Generate Stochastic Fluctuations in Superconducting
Qubits [0.0]
Recent developments on superconducting resonators and qubits enable detailed studies on the physics of two-level systems.
We measure the energy relaxation time of a frequency-tunable superconducting qubit over time and frequency.
The experiments show a variety of patterns that we are able to explain by means of extensive simulations.
arXiv Detail & Related papers (2021-06-29T22:52:36Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.