Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
- URL: http://arxiv.org/abs/2503.16394v1
- Date: Thu, 20 Mar 2025 17:53:12 GMT
- Title: Do Visual Imaginations Improve Vision-and-Language Navigation Agents?
- Authors: Akhil Perincherry, Jacob Krantz, Stefan Lee,
- Abstract summary: Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions.<n>We study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance.
- Score: 16.503837141587447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-and-Language Navigation (VLN) agents are tasked with navigating an unseen environment using natural language instructions. In this work, we study if visual representations of sub-goals implied by the instructions can serve as navigational cues and lead to increased navigation performance. To synthesize these visual representations or imaginations, we leverage a text-to-image diffusion model on landmark references contained in segmented instructions. These imaginations are provided to VLN agents as an added modality to act as landmark cues and an auxiliary loss is added to explicitly encourage relating these with their corresponding referring expressions. Our findings reveal an increase in success rate (SR) of around 1 point and up to 0.5 points in success scaled by inverse path length (SPL) across agents. These results suggest that the proposed approach reinforces visual understanding compared to relying on language instructions alone. Code and data for our work can be found at https://www.akhilperincherry.com/VLN-Imagine-website/.
Related papers
- NavHint: Vision and Language Navigation Agent with a Hint Generator [31.322331792911598]
We provide indirect supervision to the navigation agent through a hint generator that provides detailed visual descriptions.
The hint generator assists the navigation agent in developing a global understanding of the visual environment.
We evaluate our method on the R2R and R4R datasets and achieve state-of-the-art on several metrics.
arXiv Detail & Related papers (2024-02-04T16:23:16Z) - VELMA: Verbalization Embodiment of LLM Agents for Vision and Language
Navigation in Street View [81.58612867186633]
Vision and Language Navigation(VLN) requires visual and natural language understanding as well as spatial and temporal reasoning capabilities.
We show that VELMA is able to successfully follow navigation instructions in Street View with only two in-context examples.
We further finetune the LLM agent on a few thousand examples and achieve 25%-30% relative improvement in task completion over the previous state-of-the-art for two datasets.
arXiv Detail & Related papers (2023-07-12T11:08:24Z) - VLN-Trans: Translator for the Vision and Language Navigation Agent [23.84492755669486]
We design a translator module for the navigation agent to convert the original instructions into easy-to-follow sub-instruction representations.
We create a new synthetic sub-instruction dataset and design specific tasks to train the translator and the navigation agent.
We evaluate our approach on Room2Room(R2R), Room4room(R4R), and Room2Room Last (R2R-Last) datasets.
arXiv Detail & Related papers (2023-02-18T04:19:51Z) - SOAT: A Scene- and Object-Aware Transformer for Vision-and-Language
Navigation [57.12508968239015]
This work presents a transformer-based vision-and-language navigation (VLN) agent.
It uses two different visual encoders -- a scene classification network and an object detector.
Scene features contribute high-level contextual information that supports object-level processing.
arXiv Detail & Related papers (2021-10-27T03:29:34Z) - Improving Cross-Modal Alignment in Vision Language Navigation via
Syntactic Information [83.62098382773266]
Vision language navigation is the task that requires an agent to navigate through a 3D environment based on natural language instructions.
We propose a navigation agent that utilizes syntax information derived from a dependency tree to enhance alignment between the instruction and the current visual scenes.
Our agent achieves the new state-of-the-art on Room-Across-Room dataset, which contains instructions in 3 languages.
arXiv Detail & Related papers (2021-04-19T19:18:41Z) - Know What and Know Where: An Object-and-Room Informed Sequential BERT
for Indoor Vision-Language Navigation [120.90387630691816]
Vision-and-Language Navigation (VLN) requires an agent to navigate to a remote location on the basis of natural-language instructions and a set of photo-realistic panoramas.
Most existing methods take words in instructions and discrete views of each panorama as the minimal unit of encoding.
We propose an object-informed sequential BERT to encode visual perceptions and linguistic instructions at the same fine-grained level.
arXiv Detail & Related papers (2021-04-09T02:44:39Z) - Language and Visual Entity Relationship Graph for Agent Navigation [54.059606864535304]
Vision-and-Language Navigation (VLN) requires an agent to navigate in a real-world environment following natural language instructions.
We propose a novel Language and Visual Entity Relationship Graph for modelling the inter-modal relationships between text and vision.
Experiments show that by taking advantage of the relationships we are able to improve over state-of-the-art.
arXiv Detail & Related papers (2020-10-19T08:25:55Z) - Improving Vision-and-Language Navigation with Image-Text Pairs from the
Web [75.08703115646613]
We develop VLN-BERT, a visiolinguistic transformer-based model for scoring the compatibility between an instruction and panoramic RGB images.
We demonstrate that pretraining VLN-BERT on image-text pairs from the web before fine-tuning on embodied path-instruction data significantly improves performance on VLN.
arXiv Detail & Related papers (2020-04-30T17:22:40Z) - Sub-Instruction Aware Vision-and-Language Navigation [46.99329933894108]
Vision-and-language navigation requires an agent to navigate through a real 3D environment following natural language instructions.
We focus on the granularity of the visual and language sequences as well as the traceability of agents through the completion of an instruction.
We propose effective sub-instruction attention and shifting modules that select and attend to a single sub-instruction at each time-step.
arXiv Detail & Related papers (2020-04-06T14:44:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.