Towards properly implementing Theory of Mind in AI systems: An account of four misconceptions
- URL: http://arxiv.org/abs/2503.16468v1
- Date: Fri, 28 Feb 2025 19:12:35 GMT
- Title: Towards properly implementing Theory of Mind in AI systems: An account of four misconceptions
- Authors: Ramira van der Meulen, Rineke Verbrugge, Max van Duijn,
- Abstract summary: We identify four common misconceptions around theory of mind (ToM)<n>These misconceptions should be taken into account when developing an AI system.<n>After discussing the misconception, we end each section by providing tentative guidelines on how the misconception can be overcome.
- Score: 1.249418440326334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The search for effective collaboration between humans and computer systems is one of the biggest challenges in Artificial Intelligence. One of the more effective mechanisms that humans use to coordinate with one another is theory of mind (ToM). ToM can be described as the ability to `take someone else's perspective and make estimations of their beliefs, desires and intentions, in order to make sense of their behaviour and attitudes towards the world'. If leveraged properly, this skill can be very useful in Human-AI collaboration. This introduces the question how we implement ToM when building an AI system. Humans and AI Systems work quite differently, and ToM is a multifaceted concept, each facet rooted in different research traditions across the cognitive and developmental sciences. We observe that researchers from artificial intelligence and the computing sciences, ourselves included, often have difficulties finding their way in the ToM literature. In this paper, we identify four common misconceptions around ToM that we believe should be taken into account when developing an AI system. We have hyperbolised these misconceptions for the sake of the argument, but add nuance in their discussion. The misconceptions we discuss are: (1) "Humans Use a ToM Module, So AI Systems Should As Well". (2) "Every Social Interaction Requires (Advanced) ToM". (3) "All ToM is the Same". (4) "Current Systems Already Have ToM". After discussing the misconception, we end each section by providing tentative guidelines on how the misconception can be overcome.
Related papers
- Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Making AI Intelligible: Philosophical Foundations [0.0]
'Making AI Intelligible' shows that philosophical work on the metaphysics of meaning can help answer these questions.
Author: The questions addressed in the book are not only theoretically interesting, but the answers have pressing practical implications.
arXiv Detail & Related papers (2024-06-12T12:25:04Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AI systems need to be explainable to the humans in the loop.
We will discuss how the AI agent can use mental models to either conform to human expectations, or change those expectations through explanatory communication.
While the main focus of the book is on cooperative scenarios, we will point out how the same mental models can be used for obfuscation and deception.
arXiv Detail & Related papers (2024-05-19T22:22:21Z) - Silico-centric Theory of Mind [0.2209921757303168]
Theory of Mind (ToM) refers to the ability to attribute mental states, such as beliefs, desires, intentions, and knowledge, to oneself and others.
We investigate ToM in environments with multiple, distinct, independent AI agents.
arXiv Detail & Related papers (2024-03-14T11:22:51Z) - Spontaneous Theory of Mind for Artificial Intelligence [2.7624021966289605]
We argue for a principled approach to studying and developing AI Theory of Mind (ToM)
We suggest that a robust, or general, ASI will respond to prompts textitand spontaneously engage in social reasoning.
arXiv Detail & Related papers (2024-02-16T22:41:13Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
Mathematics is one of the most powerful conceptual systems developed and used by the human species.
Rapid progress in AI, particularly propelled by advances in large language models (LLMs), has sparked renewed, widespread interest in building such systems.
arXiv Detail & Related papers (2023-10-19T02:00:31Z) - A Review on Objective-Driven Artificial Intelligence [0.0]
Humans have an innate ability to understand context, nuances, and subtle cues in communication.
Humans possess a vast repository of common-sense knowledge that helps us make logical inferences and predictions about the world.
Machines lack this innate understanding and often struggle with making sense of situations that humans find trivial.
arXiv Detail & Related papers (2023-08-20T02:07:42Z) - Mutual Theory of Mind for Human-AI Communication [5.969858080492586]
New developments are enabling AI systems to perceive, recognize, and respond with social cues based on humans' explicit or implicit behavioral and verbal cues.
These AI systems are currently serving as matchmakers on dating platforms, assisting student learning as teaching assistants, and enhancing productivity as work partners.
We propose the Mutual Theory of Mind (MToM) framework, inspired by our capability of ToM in human-human communications, to guide this new generation of HAI research.
arXiv Detail & Related papers (2022-10-07T22:46:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
The MineRL BASALT competition aims to spur forward research on this important class of techniques.
We design a suite of four tasks in Minecraft for which we expect it will be hard to write down hardcoded reward functions.
We provide a dataset of human demonstrations on each of the four tasks, as well as an imitation learning baseline.
arXiv Detail & Related papers (2021-07-05T12:18:17Z) - Dark, Beyond Deep: A Paradigm Shift to Cognitive AI with Humanlike
Common Sense [142.53911271465344]
We argue that the next generation of AI must embrace "dark" humanlike common sense for solving novel tasks.
We identify functionality, physics, intent, causality, and utility (FPICU) as the five core domains of cognitive AI with humanlike common sense.
arXiv Detail & Related papers (2020-04-20T04:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.