The impact of artificial intelligence: from cognitive costs to global inequality
- URL: http://arxiv.org/abs/2503.16494v1
- Date: Tue, 11 Mar 2025 05:49:00 GMT
- Title: The impact of artificial intelligence: from cognitive costs to global inequality
- Authors: Guy Paić, Leonid Serkin,
- Abstract summary: We argue that while artificial intelligence offers significant opportunities for progress, its rapid growth may worsen global inequalities.<n>We urge the academic community to actively participate in creating policies that ensure the benefits of artificial intelligence are shared fairly and its risks are managed effectively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we examine the wide-ranging impact of artificial intelligence on society, focusing on its potential to both help and harm global equity, cognitive abilities, and economic stability. We argue that while artificial intelligence offers significant opportunities for progress in areas like healthcare, education, and scientific research, its rapid growth -- mainly driven by private companies -- may worsen global inequalities, increase dependence on automated systems for cognitive tasks, and disrupt established economic paradigms. We emphasize the critical need for strong governance and ethical guidelines to tackle these issues, urging the academic community to actively participate in creating policies that ensure the benefits of artificial intelligence are shared fairly and its risks are managed effectively.
Related papers
- AI Safety Should Prioritize the Future of Work [13.076075926681522]
Current efforts in AI safety prioritize filtering harmful content, preventing manipulation of human behavior, and eliminating existential risks in cybersecurity or biosecurity.
While pressing, this narrow focus overlooks critical human-centric considerations that shape the long-term trajectory of a society.
arXiv Detail & Related papers (2025-04-16T23:12:30Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.
We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - Gradual Disempowerment: Systemic Existential Risks from Incremental AI Development [15.701299669203618]
We analyze how even incremental improvements in AI capabilities can undermine human influence over large-scale systems that society depends on.<n>We argue that this dynamic could lead to an effectively irreversible loss of human influence over crucial societal systems, precipitating an existential catastrophe through the permanent disempowerment of humanity.
arXiv Detail & Related papers (2025-01-28T13:45:41Z) - Causal Responsibility Attribution for Human-AI Collaboration [62.474732677086855]
This paper presents a causal framework using Structural Causal Models (SCMs) to systematically attribute responsibility in human-AI systems.
Two case studies illustrate the framework's adaptability in diverse human-AI collaboration scenarios.
arXiv Detail & Related papers (2024-11-05T17:17:45Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - The Rise of Artificial Intelligence in Educational Measurement: Opportunities and Ethical Challenges [2.569083526579529]
AI in education raises ethical concerns regarding validity, reliability, transparency, fairness, and equity.
Various stakeholders, including educators, policymakers, and organizations, have developed guidelines to ensure ethical AI use in education.
In this paper, a diverse group of AIME members examines the ethical implications of AI-powered tools in educational measurement.
arXiv Detail & Related papers (2024-06-27T05:28:40Z) - The Global Impact of AI-Artificial Intelligence: Recent Advances and
Future Directions, A Review [0.0]
The article highlights the implications of AI, including its impact on economic, ethical, social, security & privacy, and job displacement aspects.
It discusses the ethical concerns surrounding AI development, including issues of bias, security, and privacy violations.
The article concludes by emphasizing the importance of public engagement and education to promote awareness and understanding of AI's impact on society at large.
arXiv Detail & Related papers (2023-12-22T00:41:21Z) - The impact of generative artificial intelligence on socioeconomic inequalities and policy making [1.5156317247732694]
Generative artificial intelligence has the potential to both exacerbate and ameliorate existing socioeconomic inequalities.
Our goal is to highlight how generative AI could worsen existing inequalities while illuminating how AI may help mitigate pervasive social problems.
In the information domain, generative AI can democratize content creation and access, but may dramatically expand the production and proliferation of misinformation.
In education, it offers personalized learning, but may widen the digital divide.
In healthcare, it might improve diagnostics and accessibility, but could deepen pre-existing inequalities.
arXiv Detail & Related papers (2023-12-16T10:37:22Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.