When Less is Enough: Adaptive Token Reduction for Efficient Image Representation
- URL: http://arxiv.org/abs/2503.16660v1
- Date: Thu, 20 Mar 2025 19:17:08 GMT
- Title: When Less is Enough: Adaptive Token Reduction for Efficient Image Representation
- Authors: Eduard Allakhverdov, Elizaveta Goncharova, Andrey Kuznetsov,
- Abstract summary: We introduce a new method for determining feature utility based on the idea that less valuable features can be reconstructed from more valuable ones.<n>We implement this concept by integrating an autoencoder with a Gumbel-Softmax selection mechanism.<n>Our results highlight a promising direction towards adaptive and efficient multimodal pruning.
- Score: 2.2120851074630177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision encoders typically generate a large number of visual tokens, providing information-rich representations but significantly increasing computational demands. This raises the question of whether all generated tokens are equally valuable or if some of them can be discarded to reduce computational costs without compromising quality. In this paper, we introduce a new method for determining feature utility based on the idea that less valuable features can be reconstructed from more valuable ones. We implement this concept by integrating an autoencoder with a Gumbel-Softmax selection mechanism, that allows identifying and retaining only the most informative visual tokens. To validate our approach, we compared the performance of the LLaVA-NeXT model, using features selected by our method with randomly selected features. We found that on OCR-based tasks, more than 50% of the visual context can be removed with minimal performance loss, whereas randomly discarding the same proportion of features significantly affects the model capabilities. Furthermore, in general-domain tasks, even randomly retaining only 30% of tokens achieves performance comparable to using the full set of visual tokens. Our results highlight a promising direction towards adaptive and efficient multimodal pruning that facilitates scalable and low-overhead inference without compromising performance.
Related papers
- Efficient LLaMA-3.2-Vision by Trimming Cross-attended Visual Features [24.33252753245426]
We exploit the sparse nature in cross-attention maps to selectively prune redundant visual features.
Our model can reduce inference latency and memory usage while achieving benchmark parity.
arXiv Detail & Related papers (2025-04-01T09:10:32Z) - TopV: Compatible Token Pruning with Inference Time Optimization for Fast and Low-Memory Multimodal Vision Language Model [56.43860351559185]
We introduce textbfTopV, a compatible textbfTOken textbfPruning with inference Time Optimization for fast and low-memory textbfVLM.
Our framework incorporates a visual-aware cost function to measure the importance of each source visual token, enabling effective pruning of low-importance tokens.
arXiv Detail & Related papers (2025-03-24T01:47:26Z) - Accelerating Multimodal Large Language Models by Searching Optimal Vision Token Reduction [62.8375542401319]
Multimodal Large Language Models (MLLMs) encode the input image(s) as vision tokens and feed them into the language backbone.<n>The number of vision tokens increases quadratically as the image resolutions, leading to huge computational costs.<n>We propose a greedy search algorithm (G-Search) to find the least number of vision tokens to keep at each layer from the shallow to the deep.
arXiv Detail & Related papers (2024-11-30T18:54:32Z) - Inference Optimal VLMs Need Only One Visual Token but Larger Models [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
VLMs are often constrained by high latency during inference due to substantial compute required to process the large number of input tokens.
We take some initial steps towards building approaches tailored for high token compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Subobject-level Image Tokenization [60.80949852899857]
Patch-based image tokenization ignores the morphology of the visual world.
Inspired by subword tokenization, we introduce subobject-level adaptive token segmentation.
We show that subobject tokenization enables faster convergence and better generalization while using fewer visual tokens.
arXiv Detail & Related papers (2024-02-22T06:47:44Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - Revisiting Token Pruning for Object Detection and Instance Segmentation [25.3324628669201]
We investigate token pruning to accelerate inference for object and instance segmentation.
We show a reduction in performance decline from 1.5 mAP to 0.3 mAP in both boxes and masks, compared to existing token pruning methods.
arXiv Detail & Related papers (2023-06-12T11:55:33Z) - Multi-Scale And Token Mergence: Make Your ViT More Efficient [3.087140219508349]
Vision Transformer (ViT) has emerged as a prevalent model in the computer vision domain.
We propose a novel token pruning method that retains information from non-crucial tokens by merging them with more crucial tokens.
Our method achieves a remarkable 33% reduction in computational costs while only incurring a 0.1% decrease in accuracy on DeiT-S.
arXiv Detail & Related papers (2023-06-08T02:58:15Z) - SmartTrim: Adaptive Tokens and Attention Pruning for Efficient
Vision-Language Models [35.5601603013045]
We propose SmartTrim, an adaptive acceleration framework for Vision-Language Models (VLMs)
We integrate lightweight modules into the original backbone to identify and prune redundant token representations and attention heads within each layer.
We devise a self-distillation strategy to enhance the consistency between the predictions of the pruned model and its fully-capacity counterpart.
arXiv Detail & Related papers (2023-05-24T11:18:00Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
We propose an adaptive sparse token pruning framework with a minimal cost.
Our method improves the throughput of DeiT-S by 50% and brings only 0.2% drop in top-1 accuracy.
arXiv Detail & Related papers (2022-09-28T03:07:32Z) - ClusTR: Exploring Efficient Self-attention via Clustering for Vision
Transformers [70.76313507550684]
We propose a content-based sparse attention method, as an alternative to dense self-attention.
Specifically, we cluster and then aggregate key and value tokens, as a content-based method of reducing the total token count.
The resulting clustered-token sequence retains the semantic diversity of the original signal, but can be processed at a lower computational cost.
arXiv Detail & Related papers (2022-08-28T04:18:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.