Code Evolution Graphs: Understanding Large Language Model Driven Design of Algorithms
- URL: http://arxiv.org/abs/2503.16668v1
- Date: Thu, 20 Mar 2025 19:30:22 GMT
- Title: Code Evolution Graphs: Understanding Large Language Model Driven Design of Algorithms
- Authors: Niki van Stein, Anna V. Kononova, Lars Kotthoff, Thomas Bäck,
- Abstract summary: Large Language Models (LLMs) have demonstrated great promise in generating code.<n>We show results for three benchmark problem classes and demonstrate novel insights.
- Score: 2.827573861233375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated great promise in generating code, especially when used inside an evolutionary computation framework to iteratively optimize the generated algorithms. However, in some cases they fail to generate competitive algorithms or the code optimization stalls, and we are left with no recourse because of a lack of understanding of the generation process and generated codes. We present a novel approach to mitigate this problem by enabling users to analyze the generated codes inside the evolutionary process and how they evolve over repeated prompting of the LLM. We show results for three benchmark problem classes and demonstrate novel insights. In particular, LLMs tend to generate more complex code with repeated prompting, but additional complexity can hurt algorithmic performance in some cases. Different LLMs have different coding ``styles'' and generated code tends to be dissimilar to other LLMs. These two findings suggest that using different LLMs inside the code evolution frameworks might produce higher performing code than using only one LLM.
Related papers
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - Steering Large Language Models between Code Execution and Textual Reasoning [22.279107036500083]
Textual reasoning has inherent limitations in solving tasks with challenges in math, logics, optimization, and searching.<n>OpenAI GPT Code Interpreter and multi-agent frameworks such as AutoGen have demonstrated remarkable proficiency of integrating code generation and execution.<n>We propose three methods to better steer LLM code/text generation and achieve a notable improvement.
arXiv Detail & Related papers (2024-10-04T15:44:47Z) - Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
Large Language Models (LLMs) struggle with accuracy and are unsuitable for high-risk applications.
We introduce a solution that divides the code generation into two parts; one to be handled by an LLM and one to be handled by formal methods-based program synthesis.
arXiv Detail & Related papers (2024-09-18T15:59:06Z) - EPiC: Cost-effective Search-based Prompt Engineering of LLMs for Code Generation [8.009881267479189]
Large Language Models (LLMs) have seen increasing use in various software development tasks, especially in code generation.
We propose an alternative approach named Evolutionary Prompt Engineering for Code (EPiC) to evolve the original prompts toward better ones that produce high-quality code.
Our evaluation against state-of-the-art (SOTA) LLM-based code generation models shows that EPiC outperforms all the baselines in terms of cost-effectiveness.
arXiv Detail & Related papers (2024-08-20T21:15:36Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
We introduce a scalable method for generating synthetic instructions to enhance the code generation capability of Large Language Models.
The proposed algorithm, Genetic-Instruct, mimics evolutionary processes, utilizing self-instruction to create numerous synthetic samples from a limited number of seeds.
arXiv Detail & Related papers (2024-07-29T20:42:59Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
We introduce CodecLM, a framework for adaptively generating high-quality synthetic data for instruction-following abilities.
We first encode seed instructions into metadata, which are concise keywords generated on-the-fly to capture the target instruction distribution.
We also introduce Self-Rubrics and Contrastive Filtering during decoding to tailor data-efficient samples.
arXiv Detail & Related papers (2024-04-08T21:15:36Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
We introduce StepCoder, a novel framework for code generation, consisting of two main components.
CCCS addresses the exploration challenge by breaking the long sequences code generation task into a Curriculum of Code Completion Subtasks.
FGO only optimize the model by masking the unexecuted code segments to provide Fine-Grained Optimization.
Our method improves the ability to explore the output space and outperforms state-of-the-art approaches in corresponding benchmarks.
arXiv Detail & Related papers (2024-02-02T13:14:31Z) - Mutation-based Consistency Testing for Evaluating the Code Understanding
Capability of LLMs [5.549095839198671]
Large Language Models (LLMs) have shown remarkable capabilities in processing both natural and programming languages.
We propose a novel method to assess the code understanding performance of LLMs, particularly focusing on subtle differences between code and its descriptions.
We apply different types of code mutations, such as operator replacement and statement deletion, to generate inconsistent code-description pairs.
We conduct a case study on the two popular LLMs, GPT-3.5 and GPT-4, using the state-of-the-art code generation benchmark, HumanEval-X.
arXiv Detail & Related papers (2024-01-11T14:27:43Z) - CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules [51.82044734879657]
We propose CodeChain, a novel framework for inference that elicits modularized code generation through a chain of self-revisions.
We find that CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35% on APPS and 76% on CodeContests.
arXiv Detail & Related papers (2023-10-13T10:17:48Z) - Fixing Large Language Models' Specification Misunderstanding for Better Code Generation [13.494822086550604]
muFiX is a novel prompting technique to improve the code generation performance of large language models (LLMs)<n>It first exploits test case analysis to obtain specification understanding and enables a self-improvement process.<n>muFiX further fixes the specification understanding towards the direction reducing the gap between the provided understanding and the actual understanding.
arXiv Detail & Related papers (2023-09-28T02:58:07Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
Large language models (LLMs) excel at implementing code from functionality descriptions but struggle with algorithmic problems.
We propose ALGO, a framework that synthesizes Algorithmic programs with LLM-Generated Oracles to guide the generation and verify their correctness.
Experiments show that when equipped with ALGO, we achieve an 8x better one-submission pass rate over the Codex model and a 2.6x better one-submission pass rate over CodeT.
arXiv Detail & Related papers (2023-05-24T00:10:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.