FAIT: Fault-Aware Fine-Tuning for Better Code Generation
- URL: http://arxiv.org/abs/2503.16913v1
- Date: Fri, 21 Mar 2025 07:23:26 GMT
- Title: FAIT: Fault-Aware Fine-Tuning for Better Code Generation
- Authors: Lishui Fan, Zhongxin Liu, Haoye Wang, Lingfeng Bao, Xin Xia, Shanping Li,
- Abstract summary: We propose Fault-Aware Fine-Tuning (FAIT) to enhance instruction-tuned large language models' code generation.<n>Our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training.<n>Some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo.
- Score: 11.8755180563981
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.
Related papers
- Quantizing Large Language Models for Code Generation: A Differentiated Replication [51.85505914274633]
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language.<n>LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint.<n>New frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70%.
arXiv Detail & Related papers (2025-03-10T09:26:08Z) - LLM2: Let Large Language Models Harness System 2 Reasoning [65.89293674479907]
Large language models (LLMs) have exhibited impressive capabilities across a myriad of tasks, yet they occasionally yield undesirable outputs.<n>We introduce LLM2, a novel framework that combines an LLM with a process-based verifier.<n>LLMs2 is responsible for generating plausible candidates, while the verifier provides timely process-based feedback to distinguish desirable and undesirable outputs.
arXiv Detail & Related papers (2024-12-29T06:32:36Z) - Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - Instruct or Interact? Exploring and Eliciting LLMs' Capability in Code Snippet Adaptation Through Prompt Engineering [19.019004855931676]
Large language models (LLMs) have confirmed their effectiveness in the code generation task with promising results.
Their performance on adaptation, a reuse-oriented and context-dependent code change prediction task, is still unclear.
We propose an interactive prompting approach to elicit LLMs' adaptation ability.
arXiv Detail & Related papers (2024-11-23T09:40:36Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
Large Language Models (LLMs) are widely adopted for assisting in software development tasks.<n>We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code.
arXiv Detail & Related papers (2024-11-18T06:22:38Z) - Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
This paper pioneers the exploration of Large Language Models (LLMs) as code executors.
We are the first to examine this feasibility across various LLMs, including OpenAI's o1, GPT-4o, GPT-3.5, DeepSeek, and Qwen-Coder.
We introduce an Iterative Instruction Prompting (IIP) technique that processes code snippets line by line, enhancing the accuracy of weaker models by an average of 7.22%.
arXiv Detail & Related papers (2024-10-09T08:23:22Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Multi-Objective Fine-Tuning for Enhanced Program Repair with LLMs [16.890411067079885]
Large language models (LLMs) have demonstrated remarkable capabilities on a broad spectrum of downstream tasks.
We propose a novel perspective on the learning focus of LLM fine-tuning for program repair.
We apply MORepair to fine-tune four open-source LLMs with different sizes and architectures.
arXiv Detail & Related papers (2024-04-19T05:36:21Z) - SEED: Customize Large Language Models with Sample-Efficient Adaptation for Code Generation [35.88318116340547]
We propose a novel adaptation approach named SEED, which stands for Sample-Efficient adaptation with Error-Driven learning for code generation.
We show that SEED achieves superior performance with few training samples, showing an average relative improvement of 54.7% in Pass@1 on multiple code generation benchmarks.
arXiv Detail & Related papers (2024-02-29T16:09:02Z) - Accelerating LLaMA Inference by Enabling Intermediate Layer Decoding via
Instruction Tuning with LITE [62.13435256279566]
Large Language Models (LLMs) have achieved remarkable performance across a wide variety of natural language tasks.
However, their large size makes their inference slow and computationally expensive.
We show that it enables these layers to acquire 'good' generation ability without affecting the generation ability of the final layer.
arXiv Detail & Related papers (2023-10-28T04:07:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.