Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
- URL: http://arxiv.org/abs/2503.16980v3
- Date: Wed, 02 Apr 2025 21:54:38 GMT
- Title: Token Dynamics: Towards Efficient and Dynamic Video Token Representation for Video Large Language Models
- Authors: Haichao Zhang, Yun Fu,
- Abstract summary: We introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens.<n>We propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence.<n>Experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%.
- Score: 50.214593234229255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Token-based video representation has emerged as a promising approach for enabling LLMs to interpret video content. However, existing token reduction, such as token pruning and token merging, often disrupt essential spatial-temporal positional embeddings, failing to adequately balance computational efficiency with fewer tokens. Consequently, these methods result in lengthy token sequences, limiting their applicability in scenarios requiring extreme token compression, such as video large language models. In this paper, we introduce the novel task of extreme short token reduction, aiming to represent extensive video sequences with a minimal number of tokens. To address this challenge, we propose Token Dynamics, a new video representation framework that dynamically reduces token count while preserving spatial-temporal coherence. Specifically, we disentangle video representations by separating visual embeddings from grid-level motion information, structuring them into: 1. a concise token hash table, created by clustering tokens that describe object-level content; 2. a token indices key map, capturing detailed spatial-temporal motion patterns across grids; 3. a token hash function, which vector-quantizes the token hash table to reconstruct the token sequence from the key map. Furthermore, we introduce a cross-dynamics attention mechanism that integrates motion features into the token base without increasing token length, thereby maintaining compactness and spatial-temporal integrity. The experiments demonstrate a reduction of token count to merely 0.07% of the original tokens, with only a minor performance drop of 1.13%. Additionally, we propose two novel subtasks within extreme token reduction (fixed-length and adaptive-length compression). Our method offers significantly lower theoretical complexity, fewer tokens, and enhanced throughput, thus providing an efficient solution for video LLMs.
Related papers
- Bridging Continuous and Discrete Tokens for Autoregressive Visual Generation [63.89280381800457]
We propose TokenBridge, which maintains the strong representation capacity of continuous tokens while preserving the modeling simplicity of discrete tokens.<n>We introduce a dimension-wise quantization strategy that independently discretizes each feature dimension, paired with a lightweight autoregressive prediction mechanism.<n>Our approach achieves reconstruction and generation quality on par with continuous methods while using standard categorical prediction.
arXiv Detail & Related papers (2025-03-20T17:59:59Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - Multi-Stage Vision Token Dropping: Towards Efficient Multimodal Large Language Model [45.01871133425388]
We propose Multi-stage Token Dropping (MustDrop) to measure the importance of each token from the whole lifecycle.
MustDrop reduces about 88.5% FLOPs on LLaVA with a compression ratio of 92.2% while maintaining comparable accuracy.
arXiv Detail & Related papers (2024-11-16T13:45:33Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.
To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.
We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Video Token Merging for Long-form Video Understanding [17.59960070514554]
We propose a learnable video token merging algorithm that dynamically merges tokens based on their saliency.
Our approach significantly reduces memory costs by 84% and boosts throughput by approximately 6.89 times compared to baseline algorithms.
arXiv Detail & Related papers (2024-10-31T09:55:32Z) - ElasticTok: Adaptive Tokenization for Image and Video [109.75935878130582]
We introduce ElasticTok, a method that conditions on prior frames to adaptively encode a frame into a variable number of tokens.<n>During inference, ElasticTok can dynamically allocate tokens when needed.<n>Our evaluations on images and video demonstrate the effectiveness of our approach in efficient token usage.
arXiv Detail & Related papers (2024-10-10T20:54:15Z) - LLaVA-PruMerge: Adaptive Token Reduction for Efficient Large Multimodal Models [35.88374542519597]
Large Multimodal Models (LMMs) have shown significant visual reasoning capabilities by connecting a visual encoder and a large language model.
Recent LMMs incorporate more complex visual inputs, such as high-resolution images and videos, which further increases the number of visual tokens significantly.
We propose PruMerge, a novel adaptive visual token reduction strategy that significantly reduces the number of visual tokens without compromising the performance of LMMs.
arXiv Detail & Related papers (2024-03-22T17:59:52Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - CenterCLIP: Token Clustering for Efficient Text-Video Retrieval [67.21528544724546]
In CLIP, the essential visual tokenization process, which produces discrete visual token sequences, generates many homogeneous tokens due to the redundancy nature of consecutive frames in videos.
This significantly increases computation costs and hinders the deployment of video retrieval models in web applications.
In this paper, we design a multi-segment token clustering algorithm to find the most representative tokens and drop the non-essential ones.
arXiv Detail & Related papers (2022-05-02T12:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.