PVChat: Personalized Video Chat with One-Shot Learning
- URL: http://arxiv.org/abs/2503.17069v1
- Date: Fri, 21 Mar 2025 11:50:06 GMT
- Title: PVChat: Personalized Video Chat with One-Shot Learning
- Authors: Yufei Shi, Weilong Yan, Gang Xu, Yumeng Li, Yuchen Li, Zhenxi Li, Fei Richard Yu, Ming Li, Si Yong Yeo,
- Abstract summary: PVChat is a one-shot learning framework that enables subject-aware question answering from a single video for each subject.<n>Our approach optimize a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset.<n>We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage.
- Score: 15.328085576102106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video large language models (ViLLMs) excel in general video understanding, e.g., recognizing activities like talking and eating, but struggle with identity-aware comprehension, such as "Wilson is receiving chemotherapy" or "Tom is discussing with Sarah", limiting their applicability in smart healthcare and smart home environments. To address this limitation, we propose a one-shot learning framework PVChat, the first personalized ViLLM that enables subject-aware question answering (QA) from a single video for each subject. Our approach optimizes a Mixture-of-Heads (MoH) enhanced ViLLM on a synthetically augmented video-QA dataset, leveraging a progressive image-to-video learning strategy. Specifically, we introduce an automated augmentation pipeline that synthesizes identity-preserving positive samples and retrieves hard negatives from existing video corpora, generating a diverse training dataset with four QA types: existence, appearance, action, and location inquiries. To enhance subject-specific learning, we propose a ReLU Routing MoH attention mechanism, alongside two novel objectives: (1) Smooth Proximity Regularization for progressive learning through exponential distance scaling and (2) Head Activation Enhancement for balanced attention routing. Finally, we adopt a two-stage training strategy, transitioning from image pre-training to video fine-tuning, enabling a gradual learning process from static attributes to dynamic representations. We evaluate PVChat on diverse datasets covering medical scenarios, TV series, anime, and real-world footage, demonstrating its superiority in personalized feature understanding after learning from a single video, compared to state-of-the-art ViLLMs.
Related papers
- ViSpeak: Visual Instruction Feedback in Streaming Videos [50.99067964073338]
We propose a novel task named Visual Instruction Feedback in which models should be aware of visual contents and learn to extract instructions from them.<n>We propose the ViSpeak model, which is a SOTA streaming video understanding LMM with GPT-4o-level performance on various streaming video understanding benchmarks.
arXiv Detail & Related papers (2025-03-17T03:05:31Z) - VideoDistill: Language-aware Vision Distillation for Video Question Answering [24.675876324457747]
We propose VideoDistill, a framework with language-aware (i.e., goal-driven) behavior in both vision perception and answer generation process.
VideoDistill generates answers only from question-related visual embeddings.
We conduct experimental evaluations on various challenging video question-answering benchmarks, and VideoDistill achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-01T07:44:24Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - Tem-adapter: Adapting Image-Text Pretraining for Video Question Answer [79.20605034378187]
Video-language pre-trained models have shown remarkable success in guiding video question-answering tasks.
Due to the length of video sequences, training large-scale video-based models incurs considerably higher costs than training image-based ones.
This motivates us to leverage the knowledge from image-based pretraining, despite the obvious gaps between image and video domains.
arXiv Detail & Related papers (2023-08-16T15:00:50Z) - VLAB: Enhancing Video Language Pre-training by Feature Adapting and
Blending [78.1399386935455]
Large-scale image-text contrastive pre-training models, such as CLIP, have been demonstrated to effectively learn high-quality multimodal representations.
We propose a novel video-text pre-training method dubbed VLAB: Video Language pre-training by feature generativearity and Blending.
VLAB transfers CLIP representations to video pre-training tasks and develops unified video multimodal models for a wide range of video-text tasks.
arXiv Detail & Related papers (2023-05-22T15:54:22Z) - InternVideo: General Video Foundation Models via Generative and
Discriminative Learning [52.69422763715118]
We present general video foundation models, InternVideo, for dynamic and complex video-level understanding tasks.
InternVideo efficiently explores masked video modeling and video-language contrastive learning as the pretraining objectives.
InternVideo achieves state-of-the-art performance on 39 video datasets from extensive tasks including video action recognition/detection, video-language alignment, and open-world video applications.
arXiv Detail & Related papers (2022-12-06T18:09:49Z) - Self-supervised video pretraining yields robust and more human-aligned visual representations [14.599429594703539]
General representations far outperform prior video pretraining methods on image understanding tasks.<n>VITO representations are significantly more robust to natural and synthetic deformations than image-, video-, and adversarially-trained ones.<n>These results suggest that video pretraining could be a simple way of learning unified, robust, and human-aligned representations of the visual world.
arXiv Detail & Related papers (2022-10-12T17:30:12Z) - Self-Supervised Learning for Videos: A Survey [70.37277191524755]
Self-supervised learning has shown promise in both image and video domains.
In this survey, we provide a review of existing approaches on self-supervised learning focusing on the video domain.
arXiv Detail & Related papers (2022-06-18T00:26:52Z) - Self-Supervised Video Representation Learning with Motion-Contrastive
Perception [13.860736711747284]
Motion-Contrastive Perception Network (MCPNet)
MCPNet consists of two branches, namely, Motion Information Perception (MIP) and Contrastive Instance Perception (CIP)
Our method outperforms current state-of-the-art visual-only self-supervised approaches.
arXiv Detail & Related papers (2022-04-10T05:34:46Z) - Robust One Shot Audio to Video Generation [10.957973845883162]
OneShotA2V is a novel approach to synthesize a talking person video of arbitrary length using as input: an audio signal and a single unseen image of a person.
OneShotA2V leverages curriculum learning to learn movements of expressive facial components and hence generates a high-quality talking-head video of the given person.
arXiv Detail & Related papers (2020-12-14T10:50:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.