FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
- URL: http://arxiv.org/abs/2503.17229v1
- Date: Fri, 21 Mar 2025 15:32:24 GMT
- Title: FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs
- Authors: Albert Sawczyn, Jakub Binkowski, Denis Janiak, Bogdan Gabrys, Tomasz Kajdanowicz,
- Abstract summary: Large Language Models (LLMs) frequently generate hallucinated content.<n>We propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection.<n>Our approach represents text as knowledge graphs consisting of facts in the form of triples.
- Score: 8.820670807424174
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) frequently generate hallucinated content, posing significant challenges for applications where factuality is crucial. While existing hallucination detection methods typically operate at the sentence level or passage level, we propose FactSelfCheck, a novel black-box sampling-based method that enables fine-grained fact-level detection. Our approach represents text as knowledge graphs consisting of facts in the form of triples. Through analyzing factual consistency across multiple LLM responses, we compute fine-grained hallucination scores without requiring external resources or training data. Our evaluation demonstrates that FactSelfCheck performs competitively with leading sampling-based methods while providing more detailed insights. Most notably, our fact-level approach significantly improves hallucination correction, achieving a 35% increase in factual content compared to the baseline, while sentence-level SelfCheckGPT yields only an 8% improvement. The granular nature of our detection enables more precise identification and correction of hallucinated content.
Related papers
- Attention-guided Self-reflection for Zero-shot Hallucination Detection in Large Language Models [20.175106988135454]
We introduce a novel Attention-Guided SElf-Reflection (AGSER) approach for zero-shot hallucination detection in Large Language Models (LLMs)<n>The AGSER method utilizes attention contributions to categorize the input query into attentive and non-attentive queries.<n>In addition to its efficacy in detecting hallucinations, AGSER notably reduces computational overhead, requiring only three passes through the LLM and utilizing two sets of tokens.
arXiv Detail & Related papers (2025-01-17T07:30:01Z) - LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated.
Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning.
arXiv Detail & Related papers (2024-11-14T18:55:26Z) - KnowHalu: Hallucination Detection via Multi-Form Knowledge Based Factual Checking [55.2155025063668]
KnowHalu is a novel approach for detecting hallucinations in text generated by large language models (LLMs)
It uses step-wise reasoning, multi-formulation query, multi-form knowledge for factual checking, and fusion-based detection mechanism.
Our evaluations demonstrate that KnowHalu significantly outperforms SOTA baselines in detecting hallucinations across diverse tasks.
arXiv Detail & Related papers (2024-04-03T02:52:07Z) - Fine-grained Hallucination Detection and Editing for Language Models [109.56911670376932]
Large language models (LMs) are prone to generate factual errors, which are often called hallucinations.
We introduce a comprehensive taxonomy of hallucinations and argue that hallucinations manifest in diverse forms.
We propose a novel task of automatic fine-grained hallucination detection and construct a new evaluation benchmark, FavaBench.
arXiv Detail & Related papers (2024-01-12T19:02:48Z) - Enhancing Uncertainty-Based Hallucination Detection with Stronger Focus [99.33091772494751]
Large Language Models (LLMs) have gained significant popularity for their impressive performance across diverse fields.
LLMs are prone to hallucinate untruthful or nonsensical outputs that fail to meet user expectations.
We propose a novel reference-free, uncertainty-based method for detecting hallucinations in LLMs.
arXiv Detail & Related papers (2023-11-22T08:39:17Z) - A New Benchmark and Reverse Validation Method for Passage-level
Hallucination Detection [63.56136319976554]
Large Language Models (LLMs) generate hallucinations, which can cause significant damage when deployed for mission-critical tasks.
We propose a self-check approach based on reverse validation to detect factual errors automatically in a zero-resource fashion.
We empirically evaluate our method and existing zero-resource detection methods on two datasets.
arXiv Detail & Related papers (2023-10-10T10:14:59Z) - A Stitch in Time Saves Nine: Detecting and Mitigating Hallucinations of
LLMs by Validating Low-Confidence Generation [76.34411067299331]
Large language models often tend to 'hallucinate' which critically hampers their reliability.
We propose an approach that actively detects and mitigates hallucinations during the generation process.
We show that the proposed active detection and mitigation approach successfully reduces the hallucinations of the GPT-3.5 model from 47.5% to 14.5% on average.
arXiv Detail & Related papers (2023-07-08T14:25:57Z) - SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for
Generative Large Language Models [55.60306377044225]
"SelfCheckGPT" is a simple sampling-based approach to fact-check the responses of black-box models.
We investigate this approach by using GPT-3 to generate passages about individuals from the WikiBio dataset.
arXiv Detail & Related papers (2023-03-15T19:31:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.