Semi-Automated Design of Data-Intensive Architectures
- URL: http://arxiv.org/abs/2503.17259v1
- Date: Fri, 21 Mar 2025 16:01:11 GMT
- Title: Semi-Automated Design of Data-Intensive Architectures
- Authors: Arianna Dragoni, Alessandro Margara,
- Abstract summary: This paper introduces a development methodology for data-intensive architectures.<n>It guides architects in (i) designing a suitable architecture for their specific application scenario, and (ii) selecting an appropriate set of concrete systems to implement the application.<n>We show that the description languages we adopt can capture the key aspects of data-intensive architectures proposed by researchers and practitioners.
- Score: 49.1574468325115
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Today, data guides the decision-making process of most companies. Effectively analyzing and manipulating data at scale to extract and exploit relevant knowledge is a challenging task, due to data characteristics such as its size, the rate at which it changes, and the heterogeneity of formats. To address this challenge, software architects resort to build complex data-intensive architectures that integrate highly heterogeneous software systems, each offering vertically specialized functionalities. Designing a suitable architecture for the application at hand is crucial to enable high quality of service and efficient exploitation of resources. However, the design process entails a series of decisions that demand technical expertise and in-depth knowledge of individual systems and their synergies. To assist software architects in this task, this paper introduces a development methodology for data-intensive architectures, which guides architects in (i) designing a suitable architecture for their specific application scenario, and (ii) selecting an appropriate set of concrete systems to implement the application. To do so, the methodology grounds on (1) a language to precisely define an application scenario in terms of characteristics of data and requirements of stakeholders; (2) an architecture description language for data-intensive architectures; (3) a classification of systems based on the functionalities they offer and their performance trade-offs. We show that the description languages we adopt can capture the key aspects of data-intensive architectures proposed by researchers and practitioners, and we validate our methodology by applying it to real-world case studies documented in literature.
Related papers
- ARLO: A Tailorable Approach for Transforming Natural Language Software Requirements into Architecture using LLMs [0.0]
Software requirements expressed in natural language (NL) frequently suffer from verbosity, ambiguity, and inconsistency.
This paper proposes ARLO, an approach that automates the task of mapping NL requirements to architecture.
arXiv Detail & Related papers (2025-04-08T15:38:42Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - A quantitative framework for evaluating architectural patterns in ML systems [49.1574468325115]
This study proposes a framework for quantitative assessment of architectural patterns in ML systems.<n>We focus on scalability and performance metrics for cost-effective CPU-based inference.
arXiv Detail & Related papers (2025-01-20T15:30:09Z) - Software Design Pattern Model and Data Structure Algorithm Abilities on Microservices Architecture Design in High-tech Enterprises [0.4532517021515834]
This study investigates the impact of software design model capabilities and data structure algorithm abilities on architecture design within enterprises.
The findings reveal that organizations emphasizing robust design models and efficient algorithms achieve superior scalability, performance, and flexibility in their architecture.
arXiv Detail & Related papers (2024-11-05T07:26:53Z) - From Requirements to Architecture: An AI-Based Journey to
Semi-Automatically Generate Software Architectures [2.4150871564195007]
We propose a method to generate software architecture candidates based on requirements using artificial intelligence techniques.
We further envision an automatic evaluation and trade-off analysis of the generated architecture candidates.
arXiv Detail & Related papers (2024-01-25T10:56:58Z) - Architecting Data-Intensive Applications : From Data Architecture Design
to Its Quality Assurance [0.0]
Data Architecture is crucial in describing, collecting, storing, processing, and analyzing data to meet business needs.
We have evaluated the DAT on more than five cases within various industry domains, demonstrating its exceptional adaptability and effectiveness.
arXiv Detail & Related papers (2024-01-22T14:58:54Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
Serving deep learning (DL) models on relational data has become a critical requirement across diverse commercial and scientific domains.
We highlight three pivotal paradigms: The state-of-the-art DL-centric architecture offloads DL computations to dedicated DL frameworks.
The potential UDF-centric architecture encapsulates one or more tensor computations into User Defined Functions (UDFs) within the relational database management system (RDBMS)
arXiv Detail & Related papers (2023-10-07T06:01:35Z) - Enhancing Architecture Frameworks by Including Modern Stakeholders and their Views/Viewpoints [48.87872564630711]
The stakeholders with data science and Machine Learning related concerns, such as data scientists and data engineers, are yet to be included in existing architecture frameworks.<n>We surveyed 61 subject matter experts from over 25 organizations in 10 countries.
arXiv Detail & Related papers (2023-08-09T21:54:34Z) - A Query Language for Software Architecture Information (Extended
version) [3.348168323147728]
Maintenance tasks of existing software systems suffer from architecture information diverging over time.
The Digital Architecture Twin (DArT) can support software maintenance by providing up-to-date architecture information.
We contribute the Architecture Information Query Language (AIQL) which enables stakeholders to access up-to-date and tailored architecture information.
arXiv Detail & Related papers (2023-06-29T10:11:39Z) - CateCom: a practical data-centric approach to categorization of
computational models [77.34726150561087]
We present an effort aimed at organizing the landscape of physics-based and data-driven computational models.
We apply object-oriented design concepts and outline the foundations of an open-source collaborative framework.
arXiv Detail & Related papers (2021-09-28T02:59:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.