Position: Interactive Generative Video as Next-Generation Game Engine
- URL: http://arxiv.org/abs/2503.17359v1
- Date: Fri, 21 Mar 2025 17:59:22 GMT
- Title: Position: Interactive Generative Video as Next-Generation Game Engine
- Authors: Jiwen Yu, Yiran Qin, Haoxuan Che, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, Xihui Liu,
- Abstract summary: We propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE)<n>IGV's unique strengths include unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning.<n>Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
- Score: 32.7449148483466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern game development faces significant challenges in creativity and cost due to predetermined content in traditional game engines. Recent breakthroughs in video generation models, capable of synthesizing realistic and interactive virtual environments, present an opportunity to revolutionize game creation. In this position paper, we propose Interactive Generative Video (IGV) as the foundation for Generative Game Engines (GGE), enabling unlimited novel content generation in next-generation gaming. GGE leverages IGV's unique strengths in unlimited high-quality content synthesis, physics-aware world modeling, user-controlled interactivity, long-term memory capabilities, and causal reasoning. We present a comprehensive framework detailing GGE's core modules and a hierarchical maturity roadmap (L0-L4) to guide its evolution. Our work charts a new course for game development in the AI era, envisioning a future where AI-powered generative systems fundamentally reshape how games are created and experienced.
Related papers
- GameGen-X: Interactive Open-world Game Video Generation [10.001128258269675]
We introduce GameGen-X, the first diffusion transformer model specifically designed for both generating and interactively controlling open-world game videos.
It simulates an array of game engine features, such as innovative characters, dynamic environments, complex actions, and diverse events.
It provides interactive controllability, predicting and future altering content based on the current clip, thus allowing for gameplay simulation.
arXiv Detail & Related papers (2024-11-01T17:59:17Z) - Unbounded: A Generative Infinite Game of Character Life Simulation [68.37260000219479]
We introduce the concept of a generative infinite game, a video game that transcends the traditional boundaries of finite, hard-coded systems by using generative models.
We leverage recent advances in generative AI to create Unbounded: a game of character life simulation that is fully encapsulated in generative models.
arXiv Detail & Related papers (2024-10-24T17:59:31Z) - Open Role-Playing with Delta-Engines [50.86533710515017]
We propose a new style of game-play to bridge self-expression and role-playing: emphopen role-playing games (ORPGs)<n>Our vision is that, in the real world, we are individually similar when we are born, but we grow into unique ones as a result of the strongly different choices we make afterward.<n>In an ORPG, we empower players with freedom to decide their own growing curves through natural language inputs, ultimately becoming unique characters.
arXiv Detail & Related papers (2024-08-11T18:32:29Z) - A Text-to-Game Engine for UGC-Based Role-Playing Games [6.5715027492220734]
This paper introduces a novel framework for a text-to-game engine that leverages foundation models to transform simple textual inputs into intricate, multi-modal RPG experiences.<n>The engine dynamically generates game narratives, integrating text, visuals, and mechanics, while adapting characters, environments, and gameplay in realtime based on player interactions.
arXiv Detail & Related papers (2024-07-11T05:33:19Z) - ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation [3.333383360927007]
This paper proposes ChatPCG, a large language model (LLM)-driven reward design framework.
It leverages human-level insights, coupled with game expertise, to generate rewards tailored to specific game features automatically.
ChatPCG is integrated with deep reinforcement learning, demonstrating its potential for multiplayer game content generation tasks.
arXiv Detail & Related papers (2024-06-07T08:18:42Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
The IDGE project aims to democratize game development by enabling a large language model to follow free-form game rules.
We train the IDGE in a curriculum manner that progressively increases the model's exposure to complex scenarios.
Our initial progress lies in developing an IDGE for Poker, a universally cherished card game.
arXiv Detail & Related papers (2024-03-30T08:02:16Z) - Beyond Reality: The Pivotal Role of Generative AI in the Metaverse [98.1561456565877]
This paper offers a comprehensive exploration of how generative AI technologies are shaping the Metaverse.
We delve into the applications of text generation models like ChatGPT and GPT-3, which are enhancing conversational interfaces with AI-generated characters.
We also examine the potential of 3D model generation technologies like Point-E and Lumirithmic in creating realistic virtual objects.
arXiv Detail & Related papers (2023-07-28T05:44:20Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - Co-generation of game levels and game-playing agents [4.4447051343759965]
This paper introduces a POET-Inspired Neuroevolutionary System for KreativitY (PINSKY) in games.
Results demonstrate the ability of PINSKY to generate curricula of game levels, opening up a promising new avenue for research at the intersection of content generation and artificial life.
arXiv Detail & Related papers (2020-07-16T17:48:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.