BPINN-EM-Post: Stochastic Electromigration Damage Analysis in the Post-Void Phase based on Bayesian Physics-Informed Neural Network
- URL: http://arxiv.org/abs/2503.17393v1
- Date: Tue, 18 Mar 2025 00:31:12 GMT
- Title: BPINN-EM-Post: Stochastic Electromigration Damage Analysis in the Post-Void Phase based on Bayesian Physics-Informed Neural Network
- Authors: Subed Lamichhane, Haotian Lu, Sheldon X. -D. Tan,
- Abstract summary: We introduce a novel machine learning-based framework, termed BPINN-EM-Post, for efficient analysis of EM-induced postvoiding aging processes.<n>By reducing the number of variables in the loss functions through the use of analytical solutions, our method significantly improves training efficiency without accuracy loss and naturally incorporates variational effects.
- Score: 2.228763526924048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contrast to the assumptions of most existing Electromigration (EM) analysis tools, the evolution of EM-induced stress is inherently non-deterministic, influenced by factors such as input current fluctuations and manufacturing non-idealities. Traditional approaches for estimating stress variations typically involve computationally expensive and inefficient Monte Carlo simulations with industrial solvers, which quantify variations using mean and variance metrics. In this work, we introduce a novel machine learning-based framework, termed BPINNEM- Post, for efficient stochastic analysis of EM-induced postvoiding aging processes. This new approach integrates closedform analytical solutions with a Bayesian Physics-Informed Neural Network (BPINN) framework to accelerate the analysis for the first time. The closed-form solutions enforce physical laws at the individual wire segment level, while the BPINN ensures that physics constraints at inter-segment junctions are satisfied and stochastic behaviors are accurately modeled. By reducing the number of variables in the loss functions through the use of analytical solutions, our method significantly improves training efficiency without accuracy loss and naturally incorporates variational effects. Additionally, the analytical solutions effectively address the challenge of incorporating initial stress distributions in interconnect structures during post-void stress calculations. Numerical results demonstrate that BPINN-EM-Post achieves over 240x speedup compared to Monte Carlo simulations using the FEM-based COMSOL solver and more than 65x speedup compared to Monte Carlo simulations using the FDM-based EMSpice method.
Related papers
- EquiNO: A Physics-Informed Neural Operator for Multiscale Simulations [0.8345452787121658]
We propose EquiNO as a $textitcomplementary$ physics-informed PDE surrogate for predicting microscale physics.
Our framework, applicable to the so-called multiscale FE$,2,$ computations, introduces the FE-OL approach by integrating the finite element (FE) method with operator learning (OL)
arXiv Detail & Related papers (2025-03-27T08:42:13Z) - Chaos into Order: Neural Framework for Expected Value Estimation of Stochastic Partial Differential Equations [0.9944647907864256]
We introduce a novel neural framework for SPDE estimation that eliminates the need for discretization and explicitly modeling uncertainty.<n>This is the first neural framework capable directly estimating the expected values of SPDEs in an entirely non-discretized manner, offering a step forward in scientific computing.<n>Our findings highlight the immense potential of neural-based SPDE solvers, particularly for high-dimensional problems where conventional techniques falter.
arXiv Detail & Related papers (2025-02-05T23:27:28Z) - Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
Physics-Informed Neural Networks (PINNs) have emerged as an influential technology, merging the swift and automated capabilities of machine learning with the precision and dependability of simulations grounded in theoretical physics.
However, wide adoption of PINNs is still hindered by reliability issues, particularly at extreme ends of the input parameter ranges.
We propose a domain knowledge-based modifications to the PINN architecture ensuring its correct behavior.
arXiv Detail & Related papers (2024-11-15T08:55:31Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Differentiable Neural-Integrated Meshfree Method for Forward and Inverse Modeling of Finite Strain Hyperelasticity [1.290382979353427]
The present study aims to extend the novel physics-informed machine learning approach, specifically the neural-integrated meshfree (NIM) method, to model finite-strain problems.
Thanks to the inherent differentiable programming capabilities, NIM can circumvent the need for derivation of Newton-Raphson linearization of the variational form.
NIM is applied to identify heterogeneous mechanical properties of hyperelastic materials from strain data, validating its effectiveness in the inverse modeling of nonlinear materials.
arXiv Detail & Related papers (2024-07-15T19:15:18Z) - Event-Based Simulation of Stochastic Memristive Devices for Neuromorphic Computing [41.66366715982197]
We build a general model of memristors suitable for the simulation of event-based systems.
We extend an existing general model of memristors to an event-driven setting.
We demonstrate an approach for fitting the parameters of the event-based model to the drift model.
arXiv Detail & Related papers (2024-06-14T13:17:19Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
In drug discovery, molecular dynamics (MD) simulation provides a powerful tool for predicting binding affinities, estimating transport properties, and exploring pocket sites.
We propose NeuralMD, the first machine learning (ML) surrogate that can facilitate numerical MD and provide accurate simulations in protein-ligand binding dynamics.
We demonstrate the efficiency and effectiveness of NeuralMD, achieving over 1K$times$ speedup compared to standard numerical MD simulations.
arXiv Detail & Related papers (2024-01-26T09:35:17Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials.
This paper provides a physics-informed machine learning (PIML) method by integrating neural networks with the governing physical laws to predict the melt pool dynamics.
The data-efficient PINN model is attributed to the soft penalty by incorporating governing partial differential equations (PDEs), initial conditions, and boundary conditions in the PINN model.
arXiv Detail & Related papers (2023-07-23T12:12:44Z) - Multilayer Perceptron Based Stress Evolution Analysis under DC Current
Stressing for Multi-segment Wires [8.115870370527324]
Electromigration (EM) is one of the major concerns in the reliability analysis of very large scale integration (VLSI) systems.
Traditional methods are often not sufficiently accurate, leading to undesirable over-design especially in advanced technology nodes.
We propose an approach using multilayer perceptrons (MLP) to compute stress evolution in the interconnect trees during the void nucleation phase.
arXiv Detail & Related papers (2022-05-17T07:38:20Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Multiplicative noise and heavy tails in stochastic optimization [62.993432503309485]
empirical optimization is central to modern machine learning, but its role in its success is still unclear.
We show that it commonly arises in parameters of discrete multiplicative noise due to variance.
A detailed analysis is conducted in which we describe on key factors, including recent step size, and data, all exhibit similar results on state-of-the-art neural network models.
arXiv Detail & Related papers (2020-06-11T09:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.