Opportunities and Challenges of Frontier Data Governance With Synthetic Data
- URL: http://arxiv.org/abs/2503.17414v1
- Date: Fri, 21 Mar 2025 00:30:17 GMT
- Title: Opportunities and Challenges of Frontier Data Governance With Synthetic Data
- Authors: Madhavendra Thakur, Jason Hausenloy,
- Abstract summary: We identify 3 key governance and accountability challenges that synthetic data poses.<n>We find applications for synthetic data towards adversarial training, bias mitigation and value reinforcement.<n>These could not only counteract the risks of synthetic data, but serve as critical levers for governance of the frontier in the future.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Synthetic data, or data generated by machine learning models, is increasingly emerging as a solution to the data access problem. However, its use introduces significant governance and accountability challenges, and potentially debases existing governance paradigms, such as compute and data governance. In this paper, we identify 3 key governance and accountability challenges that synthetic data poses - it can enable the increased emergence of malicious actors, spontaneous biases and value drift. We thus craft 3 technical mechanisms to address these specific challenges, finding applications for synthetic data towards adversarial training, bias mitigation and value reinforcement. These could not only counteract the risks of synthetic data, but serve as critical levers for governance of the frontier in the future.
Related papers
- Towards Data Governance of Frontier AI Models [0.0]
We look at how data can enable new governance capacities for frontier AI models.<n>Data is non-rival, often non-excludable, easily replicable, and increasingly synthesizable.<n>We propose a set of policy mechanisms targeting key actors along the data supply chain.
arXiv Detail & Related papers (2024-12-05T02:37:51Z) - Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.<n>We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Synthetic Data in AI: Challenges, Applications, and Ethical Implications [16.01404243695338]
This report explores the multifaceted aspects of synthetic data.
It emphasizes the challenges and potential biases these datasets may harbor.
It also critically addresses the ethical considerations and legal implications associated with synthetic datasets.
arXiv Detail & Related papers (2024-01-03T09:03:30Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - The Use of Synthetic Data to Train AI Models: Opportunities and Risks
for Sustainable Development [0.6906005491572401]
This paper investigates the policies governing the creation, utilization, and dissemination of synthetic data.
A well crafted synthetic data policy must strike a balance between privacy concerns and the utility of data.
arXiv Detail & Related papers (2023-08-31T23:18:53Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Representative & Fair Synthetic Data [68.8204255655161]
We present a framework to incorporate fairness constraints into the self-supervised learning process.
We generate a representative as well as fair version of the UCI Adult census data set.
We consider representative & fair synthetic data a promising future building block to teach algorithms not on historic worlds, but rather on the worlds that we strive to live in.
arXiv Detail & Related papers (2021-04-07T09:19:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.