Enhanced Smart Contract Reputability Analysis using Multimodal Data Fusion on Ethereum
- URL: http://arxiv.org/abs/2503.17426v2
- Date: Sat, 29 Mar 2025 12:07:37 GMT
- Title: Enhanced Smart Contract Reputability Analysis using Multimodal Data Fusion on Ethereum
- Authors: Cyrus Malik, Josef Bajada, Joshua Ellul,
- Abstract summary: We propose a data fusion framework that integrates code features with transactional data to enhance reputability prediction.<n>Our framework initially focuses on AI-based code analysis, utilizing GAN-augmented opcode embeddings to address class imbalance.<n>By providing a holistic view of smart contract behaviour, our approach enhances the model's ability to assess reputability, identify fraudulent activities, and predict anomalous patterns.
- Score: 0.9831489366502298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The evaluation of smart contract reputability is essential to foster trust in decentralized ecosystems. However, existing methods that rely solely on code analysis or transactional data, offer limited insight into evolving trustworthiness. We propose a multimodal data fusion framework that integrates code features with transactional data to enhance reputability prediction. Our framework initially focuses on AI-based code analysis, utilizing GAN-augmented opcode embeddings to address class imbalance, achieving 97.67% accuracy and a recall of 0.942 in detecting illicit contracts, surpassing traditional oversampling methods. This forms the crux of a reputability-centric fusion strategy, where combining code and transactional data improves recall by 7.25% over single-source models, demonstrating robust performance across validation sets. By providing a holistic view of smart contract behaviour, our approach enhances the model's ability to assess reputability, identify fraudulent activities, and predict anomalous patterns. These capabilities contribute to more accurate reputability assessments, proactive risk mitigation, and enhanced blockchain security.
Related papers
- MOS: Towards Effective Smart Contract Vulnerability Detection through Mixture-of-Experts Tuning of Large Language Models [16.16186929130931]
Smart contract vulnerabilities pose significant security risks to blockchain systems.
We propose a smart contract vulnerability detection framework based on mixture-of-experts tuning (MOE-Tuning) of large language models.
Experiments show that MOS significantly outperforms existing methods with average improvements of 6.32% in F1 score and 4.80% in accuracy.
arXiv Detail & Related papers (2025-04-16T16:33:53Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
We propose a unified backdoor detection framework in the semi-honest setting.
Our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines.
Notably, it is the first to effectively detect backdoors in multimodal large language models.
arXiv Detail & Related papers (2025-03-21T06:12:06Z) - OATH: Efficient and Flexible Zero-Knowledge Proofs of End-to-End ML Fairness [13.986886689256128]
Zero-Knowledge Proofs of Fairness address fairness noncompliance by allowing a service provider to verify that their model serves diverse demographics equitably.
We present OATH, a framework that is deployably efficient with client-facing communication and an offline audit phase.
OATH provides a 1343x improvement to runtime over previous work for neural network ZKPoF, and scales up to much larger models.
arXiv Detail & Related papers (2024-09-17T16:00:35Z) - Synchronous Faithfulness Monitoring for Trustworthy Retrieval-Augmented Generation [96.78845113346809]
Retrieval-augmented language models (RALMs) have shown strong performance and wide applicability in knowledge-intensive tasks.
This paper proposes SynCheck, a lightweight monitor that leverages fine-grained decoding dynamics to detect unfaithful sentences.
We also introduce FOD, a faithfulness-oriented decoding algorithm guided by beam search for long-form retrieval-augmented generation.
arXiv Detail & Related papers (2024-06-19T16:42:57Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning (FL) is an emerging machine learning approach enabling model training on decentralized devices or data sources.
We propose a robust FL approach based on the credibility management scheme, called Fed-Credit.
The results exhibit superior accuracy and resilience against adversarial attacks, all while maintaining comparatively low computational complexity.
arXiv Detail & Related papers (2024-05-20T03:35:13Z) - Enhancing Security in Federated Learning through Adaptive
Consensus-Based Model Update Validation [2.28438857884398]
This paper introduces an advanced approach for fortifying Federated Learning (FL) systems against label-flipping attacks.
We propose a consensus-based verification process integrated with an adaptive thresholding mechanism.
Our results indicate a significant mitigation of label-flipping attacks, bolstering the FL system's resilience.
arXiv Detail & Related papers (2024-03-05T20:54:56Z) - On the Potential of Network-Based Features for Fraud Detection [3.0846824529023382]
This article explores using the personalised PageRank (PPR) algorithm to capture the social dynamics of fraud.
The primary objective is to compare the performance of traditional features with the addition of PPR in fraud detection models.
Results indicate that integrating PPR enhances the model's predictive power, surpassing the baseline model.
arXiv Detail & Related papers (2024-02-14T13:20:09Z) - Churn Prediction via Multimodal Fusion Learning:Integrating Customer
Financial Literacy, Voice, and Behavioral Data [14.948017876322597]
This paper proposes a multimodal fusion learning model for identifying customer churn risk levels in financial service providers.
Our approach integrates customer sentiments financial literacy (FL) level, and financial behavioral data.
Our novel approach demonstrates a marked improvement in churn prediction, achieving a test accuracy of 91.2%, a Mean Average Precision (MAP) score of 66, and a Macro-Averaged F1 score of 54.
arXiv Detail & Related papers (2023-12-03T06:28:55Z) - Secure and Verifiable Data Collaboration with Low-Cost Zero-Knowledge
Proofs [30.260427020479536]
In this paper, we propose a novel and highly efficient solution RiseFL for secure and verifiable data collaboration.
Firstly, we devise a probabilistic integrity check method that significantly reduces the cost of ZKP generation and verification.
Thirdly, we design a hybrid commitment scheme to satisfy Byzantine robustness with improved performance.
arXiv Detail & Related papers (2023-11-26T14:19:46Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
We consider a distributed reinforcement learning setting where multiple agents explore the environment and communicate their experiences through a central server.
$alpha$-fraction of agents are adversarial and can report arbitrary fake information.
We seek to identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents.
arXiv Detail & Related papers (2022-06-01T00:44:53Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.