GaussianFocus: Constrained Attention Focus for 3D Gaussian Splatting
- URL: http://arxiv.org/abs/2503.17798v1
- Date: Sat, 22 Mar 2025 15:18:23 GMT
- Title: GaussianFocus: Constrained Attention Focus for 3D Gaussian Splatting
- Authors: Zexu Huang, Min Xu, Stuart Perry,
- Abstract summary: 3D Gaussian Splatting technique delivers top-tier rendering quality and efficiency.<n>However, the method tends to generate excessive redundant noisy Gaussians overfitted to every training view.<n>We introduce GaussianFocus, an innovative approach that incorporates a patch attention algorithm to refine rendering quality.
- Score: 5.759434800012218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent developments in 3D reconstruction and neural rendering have significantly propelled the capabilities of photo-realistic 3D scene rendering across various academic and industrial fields. The 3D Gaussian Splatting technique, alongside its derivatives, integrates the advantages of primitive-based and volumetric representations to deliver top-tier rendering quality and efficiency. Despite these advancements, the method tends to generate excessive redundant noisy Gaussians overfitted to every training view, which degrades the rendering quality. Additionally, while 3D Gaussian Splatting excels in small-scale and object-centric scenes, its application to larger scenes is hindered by constraints such as limited video memory, excessive optimization duration, and variable appearance across views. To address these challenges, we introduce GaussianFocus, an innovative approach that incorporates a patch attention algorithm to refine rendering quality and implements a Gaussian constraints strategy to minimize redundancy. Moreover, we propose a subdivision reconstruction strategy for large-scale scenes, dividing them into smaller, manageable blocks for individual training. Our results indicate that GaussianFocus significantly reduces unnecessary Gaussians and enhances rendering quality, surpassing existing State-of-The-Art (SoTA) methods. Furthermore, we demonstrate the capability of our approach to effectively manage and render large scenes, such as urban environments, whilst maintaining high fidelity in the visual output.
Related papers
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
We introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results.
3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS.
arXiv Detail & Related papers (2024-11-19T11:59:54Z) - MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields [73.49548565633123]
Radiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering.
Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images.
We propose a view framework based on 3D Gaussian Splatting, named MCGS, enabling scene reconstruction from sparse input views.
arXiv Detail & Related papers (2024-10-15T08:39:05Z) - GaRField++: Reinforced Gaussian Radiance Fields for Large-Scale 3D Scene Reconstruction [1.7624442706463355]
This paper proposes a novel framework for large-scale scene reconstruction based on 3D Gaussian splatting (3DGS)
For tackling the scalability issue, we split the large scene into multiple cells, and the candidate point-cloud and camera views of each cell are correlated.
We show that our method consistently generates more high-fidelity rendering results than state-of-the-art methods of large-scale scene reconstruction.
arXiv Detail & Related papers (2024-09-19T13:43:31Z) - SplatFields: Neural Gaussian Splats for Sparse 3D and 4D Reconstruction [24.33543853742041]
3D Gaussian Splatting (3DGS) has emerged as a practical and scalable reconstruction method.
We propose an optimization strategy that effectively regularizes splat features by modeling them as the outputs of a corresponding implicit neural field.
Our approach effectively handles static and dynamic cases, as demonstrated by extensive testing across different setups and scene complexities.
arXiv Detail & Related papers (2024-09-17T14:04:20Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion [54.197343533492486]
Event3DGS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion.
Experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks.
Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
arXiv Detail & Related papers (2024-06-05T06:06:03Z) - Bootstrap-GS: Self-Supervised Augmentation for High-Fidelity Gaussian Splatting [9.817215106596146]
3D-GS faces limitations when generating novel views that significantly deviate from those encountered during training.<n>We introduce a bootstrapping framework to address this problem.<n>Our approach synthesizes pseudo-ground truth from novel views that align with the limited training set.
arXiv Detail & Related papers (2024-04-29T12:57:05Z) - SWAG: Splatting in the Wild images with Appearance-conditioned Gaussians [2.2369578015657954]
Implicit neural representation methods have shown impressive advancements in learning 3D scenes from unstructured in-the-wild photo collections.
We introduce a new mechanism to train transient Gaussians to handle the presence of scene occluders in an unsupervised manner.
arXiv Detail & Related papers (2024-03-15T16:00:04Z) - VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction [59.40711222096875]
We present VastGaussian, the first method for high-quality reconstruction and real-time rendering on large scenes based on 3D Gaussian Splatting.
Our approach outperforms existing NeRF-based methods and achieves state-of-the-art results on multiple large scene datasets.
arXiv Detail & Related papers (2024-02-27T11:40:50Z) - Spec-Gaussian: Anisotropic View-Dependent Appearance for 3D Gaussian Splatting [55.71424195454963]
Spec-Gaussian is an approach that utilizes an anisotropic spherical Gaussian appearance field instead of spherical harmonics.
Our experimental results demonstrate that our method surpasses existing approaches in terms of rendering quality.
This improvement extends the applicability of 3D GS to handle intricate scenarios with specular and anisotropic surfaces.
arXiv Detail & Related papers (2024-02-24T17:22:15Z) - Scaffold-GS: Structured 3D Gaussians for View-Adaptive Rendering [71.44349029439944]
Recent 3D Gaussian Splatting method has achieved the state-of-the-art rendering quality and speed.
We introduce Scaffold-GS, which uses anchor points to distribute local 3D Gaussians.
We show that our method effectively reduces redundant Gaussians while delivering high-quality rendering.
arXiv Detail & Related papers (2023-11-30T17:58:57Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.