Expanding the Boundaries of Vision Prior Knowledge in Multi-modal Large Language Models
- URL: http://arxiv.org/abs/2503.18034v1
- Date: Sun, 23 Mar 2025 11:33:09 GMT
- Title: Expanding the Boundaries of Vision Prior Knowledge in Multi-modal Large Language Models
- Authors: Qiao Liang, Yanjiang Liu, Ben He, Yaojie Lu, Hongyu Lin, Jia Zheng, Xianpei Han, Le Sun, Yingfei Sun,
- Abstract summary: We introduce a novel metric, $Rank_e$, to quantify the effect of vision encoder's prior knowledge on MLLM performance.<n>We propose VisPRE, a two-stage training framework that explicitly incorporates prior knowledge at the vision encoder level.<n> Experimental results demonstrate that augmenting vision encoder's prior knowledge substantially boosts the visual understanding capabilities of MLLMs.
- Score: 53.13731845500678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Does the prior knowledge of the vision encoder constrain the capability boundary of Multi-modal Large Language Models (MLLMs)? While most existing research treats MLLMs as unified systems optimized through end-to-end training, the impact of vision encoder's prior knowledge is seldom investigated. In this work, we introduce a novel metric, $Rank_e$, to quantify the effect of the vision encoder's prior knowledge on MLLM performance. Our analysis reveals a positive correlation between prior knowledge and MLLM performance. Moreover, we find that domain-specific fine-tuning using solely end-to-end visual question answering (VQA) data is insufficient--particularly for entities with low inherent visual prior knowledge. To address this issue, we propose VisPRE (Vision Prior Remediation), a two-stage training framework that explicitly incorporates prior knowledge at the vision encoder level. Experimental results demonstrate that augmenting vision encoder's prior knowledge substantially boosts the visual understanding capabilities of MLLMs, offering a novel and effective strategy for improving performance, especially in scenarios involving uncommon visual entities.
Related papers
- Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
We investigate the contributions of visual features from different encoder layers using 18 benchmarks spanning 6 task categories.
Our findings reveal that multilayer features provide complementary strengths with varying task dependencies, and uniform fusion leads to suboptimal performance.
We propose the instruction-guided vision aggregator, a module that dynamically integrates multi-layer visual features based on textual instructions.
arXiv Detail & Related papers (2024-12-26T05:41:31Z) - Eagle: Exploring The Design Space for Multimodal LLMs with Mixture of Encoders [89.41055673919895]
This study explores the design space for MLLMs using a mixture of vision encoders and resolutions.<n>We discover that simply concatenating visual tokens from a set of complementary vision encoders is as effective as more complex mixing architectures or strategies.<n>The resulting family of MLLMs, Eagle, surpasses other leading open-source models on major MLLM benchmarks.
arXiv Detail & Related papers (2024-08-28T17:59:31Z) - Cambrian-1: A Fully Open, Vision-Centric Exploration of Multimodal LLMs [61.143381152739046]
We introduce Cambrian-1, a family of multimodal LLMs (MLLMs) designed with a vision-centric approach.
Our study uses LLMs and visual instruction tuning as an interface to evaluate various visual representations.
We provide model weights, code, supporting tools, datasets, and detailed instruction-tuning and evaluation recipes.
arXiv Detail & Related papers (2024-06-24T17:59:42Z) - MoVA: Adapting Mixture of Vision Experts to Multimodal Context [38.8308841469793]
We propose the MoVA, a powerful and novel MLLM, adaptively routing and fusing task-specific vision experts with a coarse-to-fine mechanism.
In the coarse-grained stage, we design a context-aware expert routing strategy to dynamically select the most suitable vision experts.
In the fine-grained stage, we elaborately conduct the mixture-of-vision-expert adapter (MoV-Adapter) to extract and fuse task-specific knowledge.
arXiv Detail & Related papers (2024-04-19T17:59:48Z) - Incorporating Visual Experts to Resolve the Information Loss in
Multimodal Large Language Models [121.83413400686139]
This paper proposes to improve the visual perception ability of MLLMs through a mixture-of-experts knowledge enhancement mechanism.
We introduce a novel method that incorporates multi-task encoders and visual tools into the existing MLLMs training and inference pipeline.
arXiv Detail & Related papers (2024-01-06T02:02:34Z) - VCoder: Versatile Vision Encoders for Multimodal Large Language Models [46.95488342139727]
Multimodal Large Language Models (MLLM) have recently achieved impressive performance on vision-language tasks.
However, when prompted to identify or count (perceive) the entities in a given image, existing MLLM systems fail.
We propose using Versatile vision enCoders (VCoder) as perception eyes for Multimodal LLMs.
arXiv Detail & Related papers (2023-12-21T18:49:47Z) - Behind the Magic, MERLIM: Multi-modal Evaluation Benchmark for Large Image-Language Models [50.653838482083614]
This paper introduces a scalable test-bed to assess the capabilities of IT-LVLMs on fundamental computer vision tasks.
MERLIM contains over 300K image-question pairs and has a strong focus on detecting cross-modal "hallucination" events in IT-LVLMs.
arXiv Detail & Related papers (2023-12-03T16:39:36Z) - From CLIP to DINO: Visual Encoders Shout in Multi-modal Large Language
Models [36.41816380074965]
We investigate the effectiveness of different vision encoders within Large Language Models (MLLMs)
Our findings reveal that the shallow layer features of CLIP offer particular advantages for fine-grained tasks such as grounding and region understanding.
We propose a simple yet effective feature merging strategy, named COMM, that integrates CLIP and DINO with Multi-level features Merging.
arXiv Detail & Related papers (2023-10-13T02:41:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.