M3Net: Multimodal Multi-task Learning for 3D Detection, Segmentation, and Occupancy Prediction in Autonomous Driving
- URL: http://arxiv.org/abs/2503.18100v1
- Date: Sun, 23 Mar 2025 15:08:09 GMT
- Title: M3Net: Multimodal Multi-task Learning for 3D Detection, Segmentation, and Occupancy Prediction in Autonomous Driving
- Authors: Xuesong Chen, Shaoshuai Shi, Tao Ma, Jingqiu Zhou, Simon See, Ka Chun Cheung, Hongsheng Li,
- Abstract summary: M3Net is a novel network that simultaneously tackles detection, segmentation, and 3D occupancy prediction for autonomous driving.<n>M3Net achieves state-of-the-art multi-task learning performance on the nuScenes benchmarks.
- Score: 48.17490295484055
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The perception system for autonomous driving generally requires to handle multiple diverse sub-tasks. However, current algorithms typically tackle individual sub-tasks separately, which leads to low efficiency when aiming at obtaining full-perception results. Some multi-task learning methods try to unify multiple tasks with one model, but do not solve the conflicts in multi-task learning. In this paper, we introduce M3Net, a novel multimodal and multi-task network that simultaneously tackles detection, segmentation, and 3D occupancy prediction for autonomous driving and achieves superior performance than single task model. M3Net takes multimodal data as input and multiple tasks via query-token interactions. To enhance the integration of multi-modal features for multi-task learning, we first propose the Modality-Adaptive Feature Integration (MAFI) module, which enables single-modality features to predict channel-wise attention weights for their high-performing tasks, respectively. Based on integrated features, we then develop task-specific query initialization strategies to accommodate the needs of detection/segmentation and 3D occupancy prediction. Leveraging the properly initialized queries, a shared decoder transforms queries and BEV features layer-wise, facilitating multi-task learning. Furthermore, we propose a Task-oriented Channel Scaling (TCS) module in the decoder to mitigate conflicts between optimizing for different tasks. Additionally, our proposed multi-task querying and TCS module support both Transformer-based decoder and Mamba-based decoder, demonstrating its flexibility to different architectures. M3Net achieves state-of-the-art multi-task learning performance on the nuScenes benchmarks.
Related papers
- SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.<n>It is designed to accurately detect horizontal or oriented objects from any sensor modality.<n>This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - Few-shot Multimodal Multitask Multilingual Learning [0.0]
We propose few-shot learning for a multimodal multitask multilingual (FM3) setting by adapting pre-trained vision and language models.
FM3 learns the most prominent tasks in the vision and language domains along with their intersections.
arXiv Detail & Related papers (2023-02-19T03:48:46Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
Generalist models are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model.
We release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction.
arXiv Detail & Related papers (2022-12-08T17:07:09Z) - Sparsely Activated Mixture-of-Experts are Robust Multi-Task Learners [67.5865966762559]
We study whether sparsely activated Mixture-of-Experts (MoE) improve multi-task learning.
We devise task-aware gating functions to route examples from different tasks to specialized experts.
This results in a sparsely activated multi-task model with a large number of parameters, but with the same computational cost as that of a dense model.
arXiv Detail & Related papers (2022-04-16T00:56:12Z) - MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning [82.62433731378455]
We show that tasks with high affinity at a certain scale are not guaranteed to retain this behaviour at other scales.
We propose a novel architecture, namely MTI-Net, that builds upon this finding.
arXiv Detail & Related papers (2020-01-19T21:02:36Z) - NeurAll: Towards a Unified Visual Perception Model for Automated Driving [8.49826472556323]
We propose a joint multi-task network design for learning several tasks simultaneously.
The main bottleneck in automated driving systems is the limited processing power available on deployment hardware.
arXiv Detail & Related papers (2019-02-10T12:45:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.